A novel reduced immunogenicity bispecific targeted toxin simultaneously recognizing human epidermal growth factor and interleukin-4 receptors in a mouse model of metastatic breast carcinoma.

Clin Cancer Res

Masonic Cancer Center, Section on Molecular Cancer Therapeutics, Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Published: October 2009

Purpose: To develop a targeted biological drug that when systemically injected can penetrate to metastatic breast cancer tumors, one needs a drug of high potency and reduced immunogenicity. Thus, we bioengineered a novel bispecific ligand-directed toxin (BLT) targeted by dual high-affinity cytokines with a PE(38)KDEL COOH terminus. Our purpose was to reduce toxin immunogenicity using mutagenesis, measure the ability of mutated drug to elicit B-cell antitoxin antibody responses, and show that mutated drug was effective against systemic breast cancer in vivo.

Experimental Design: A new BLT was created in which both human epidermal growth factor (EGF) and interleukin 4 cytokines were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin (PE(38)). Site-specific mutagenesis was used to mutate amino acids in seven key epitopic toxin regions that dictate B-cell generation of neutralizing antitoxin antibodies. Bioassays were used to determine whether mutation reduced potency, and ELISA studies were done to determine whether antitoxin antibodies were reduced. Finally, a genetically altered luciferase xenograft model was used; this model could be imaged in real time to determine the effect on the systemic malignant human breast cancer MDA-MB-231.

Results: EGF4KDEL 7mut was significantly effective against established systemic human breast cancer and prevented metastatic spread. Mutagenesis reduced immunogenicity by approximately 90% with no apparent loss in in vitro or in vivo activity.

Conclusions: Because EGF4KDEL 7mut was highly effective even when we waited 26 days to begin therapy and because immunogenicity was significantly reduced, we can now give multiple drug treatments for chemotherapy-refractory breast cancer in clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756320PMC
http://dx.doi.org/10.1158/1078-0432.CCR-09-0696DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
reduced immunogenicity
12
human epidermal
8
epidermal growth
8
growth factor
8
metastatic breast
8
mutated drug
8
antitoxin antibodies
8
human breast
8
egf4kdel 7mut
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!