Objective: To present a unique case of transient, asymptomatic chemotherapy-induced hypocalcemia not attributable to hypomagnesemia or tumor lysis syndrome and review causes of hypocalcemia related to cancer with and without use of chemotherapy.
Methods: We present a case detailing the clinical and laboratory findings of a patient who had severe hypocalcemia during chemotherapy and discuss causes of hypocalcemia with an extensive literature review of chemotherapeutic agents associated with this biochemical abnormality.
Results: In a 90-year-old man, hypocalcemia developed during 2 courses of chemotherapy for Hodgkin lymphoma, with partial recovery between courses and normal serum calcium 10 months after completion of treatment. Magnesium, vitamin D, and parathyroid hormone levels were low normal. There was no evidence of tumor lysis syndrome. Of the various agents administered, vinca alkaloids seemed the most likely cause. Serial testing suggested that the underlying mechanism may have been acquired, reversible hypoparathyroidism. No other similar case was found in the published literature.
Conclusion: The severe hypocalcemia in our patient could not be attributed to hypomagnesemia or tumor lysis syndrome, and it was clearly associated with the timing of his chemotherapeutic regimen. Possibilities include direct parathyroid hormone suppression or alteration of calcium sensing by the chemotherapeutic drugs. Serum calcium surveillance before and during chemotherapeutic management of cancer patients may reveal more instances and provide insight into the exact mechanism of this lesser known yet striking complication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4158/EP09137.RA | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.
Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.
Breast Cancer (Auckl)
January 2025
Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Background: Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy.
Objectives: We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology.
Ther Adv Drug Saf
January 2025
Department of Pharmacy, Daping Hospital, Army Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
Background: Gilteritinib and midostaurin are FLT3 inhibitors that have made significant progress in the treatment of acute myeloid leukemia. However, their real-world safety profile in a large sample population is incomplete.
Objectives: We aimed to provide a pharmacovigilance study of the adverse events (AEs) associated with gilteritinib and midostaurin through the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database.
Cancers (Basel)
December 2024
Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar.
Background: Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs.
Methods: A systematic literature review was performed to identify renal ADRs associated with TKIs in CML.
Sci Adv
January 2025
Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!