Background And Aims: We previously reported that steatohepatitis develops in obese, hypercholesterolemic, diabetic foz/foz mice fed a high-fat (HF) diet for 12 months. We now report earlier onset of steatohepatitis in relation to metabolic abnormalities, and clarify the roles of dietary fat and bodily lipid partitioning on steatosis severity, liver injury and inflammatory recruitment in this novel non-alcoholic steatohepatitis (NASH) model.

Methods: Foz/foz (Alms1 mutant) and wild-type (WT) mice were fed a HF diet or chow, and metabolic characteristics and liver histology were studied at 2, 6, 12 and 24 weeks.

Results: After 12 weeks HF-feeding, foz/foz mice were obese and diabetic with approximately 70% reduction in serum adiponectin. Hepatomegaly developed at this time, corresponding to a plateau in adipose expansion and increased adipose inflammation. Liver histology showed mild inflammation and hepatocyte ballooning as well as steatosis. By 24 weeks, HF-fed foz/foz mice developed severe steatohepatitis (marked steatosis, alanine aminotransferase elevation, ballooning, inflammation, fibrosis), whereas dietary and genetic controls showed only simple steatosis. While steatosis was associated with hepatic lipogenesis, indicated by increased fatty acid synthase activity, steatohepatitis was associated with significantly higher levels of CD36, indicating active fatty acid uptake, possibly under the influence of peroxisome proliferator-activated receptor-gamma.

Conclusion: In mice genetically predisposed to obesity and diabetes, HF feeding leads to restriction of adipose tissue for accommodation of excess energy, causing lipid partitioning into liver, and transformation of simple steatosis to fibrosing steatohepatitis. The way in which HF feeding 'saturates' adipose stores, decreases serum adiponectin and causes hepatic inflammation in steatohepatitis may provide clues to pathogenesis of NASH in metabolic syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1746.2009.05996.xDOI Listing

Publication Analysis

Top Keywords

foz/foz mice
12
steatohepatitis
8
obese diabetic
8
mice fed
8
lipid partitioning
8
liver histology
8
serum adiponectin
8
simple steatosis
8
fatty acid
8
steatosis
7

Similar Publications

A gut microbiota-independent mechanism shapes the bile acid pool in mice with MASH.

JHEP Rep

November 2024

Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium.

Article Synopsis
  • The study investigates how changes in bile acids contribute to metabolic dysfunction-associated steatohepatitis (MASH), focusing on the role of gut bacteria.
  • Mice with MASH on a high-fat diet were compared to their wildtype counterparts to isolate the effects of MASH from diet and environmental factors.
  • Findings show that MASH alters bile acid levels through mechanisms unrelated to gut microbiota, particularly highlighting increased enzyme activity in the liver that reduces secondary bile acid levels.
View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) confers a risk for cardiovascular diseases in patients. Animal models may help exploring the mechanisms linking liver and heart diseases. Hence, we explored the cardiac phenotype in two MASH mouse models: foz/foz mice fed a high-fat diet (HFD) for 24 or 60 weeks and C57BL/6J mice fed a high-fat-, high-cholesterol-, and high-fructose diet for 60 weeks.

View Article and Find Full Text PDF

Exploiting the biological effect exerted by lipid nanocapsules in non-alcoholic fatty liver disease.

J Control Release

April 2023

UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WELBIO (Walloon Excellence in Life sciences and BIOtechnology), WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) affects approximately 25% of the global adult population and can progress to end-stage liver disease with life-threatening complications; however, no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNCs) are a very versatile platform, easy to produce, and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being extensively studied in clinical trials in the context of NAFLD.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease in the world. Progression toward non-alcoholic steatohepatitis (NASH) is associated with alterations of skeletal muscle. One plausible mechanism for altered muscle compartment in liver disease is changes in ammonia metabolism.

View Article and Find Full Text PDF

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a major health concern with no approved pharmacological therapies. Molecules developed to activate the bile acid-receptor TGR5 regulate pathways involved in MALFD pathogenesis, but the therapeutic value of TGR5 activation on the active form of MAFLD, non-alcoholic steatohepatitis (NASH), still needs to be evaluated. As TGR5 agonism is low in MAFLD, we used strategies to promote the production of endogenous TGR5 ligands or administered pharmacological TGR5 agonists, INT-777 and RO5527239, to study the effect of TGR5 activation on liver and metabolic diseases in high-fat diet-fed mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!