Preparation of (14)C-labeled multiwalled carbon nanotubes for biodistribution investigations.

J Am Chem Soc

CEA, IBITECS, SCBM and SIMOPRO, CEA, IRAMIS, SPAM and SCM, Gif sur Yvette, F-91191, France, and CEA, IRCM, SREIT, Bruyeres le Chatel, F-91680, France.

Published: October 2009

AI Article Synopsis

  • - A new method for labeling carbon nanotubes with (14)C is introduced, focusing on the carboxylic acid functions through an optimized decarbonylation reaction.
  • - The labeling technique was successfully applied to multiwalled carbon nanotubes (MWNTs) and tested in rats to study their in vivo behavior.
  • - Initial findings indicate the liver as the primary organ affected by the nanotubes, facilitating long-term tracking of their presence in organs using sensitive autoradiographic methods.

Article Abstract

A new method allowing the (14)C-labeling of carboxylic acid functions of carbon nanotubes is described. The key step of the labeling process is a decarbonylation reaction that has been developed and optimized with the help of a screening method. The optimized process has been successfully applied to multiwalled carbon nanotubes (MWNTs), and the corresponding (14)C-labeled nanotubes were used to investigate their in vivo behavior. Preliminary results obtained after i.v. contamination of rats revealed liver as the main target organ. Radiolabeling of NTs with a long-life radioactive nucleus like (14)C, coupled to a highly sensitive autoradiographic method, that provides a unique detection threshold, will make it possible to determine for a long time period whether or not NTs remain in any organs after animal exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja906319zDOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
multiwalled carbon
8
preparation 14c-labeled
4
14c-labeled multiwalled
4
nanotubes
4
nanotubes biodistribution
4
biodistribution investigations
4
investigations method
4
method allowing
4
allowing 14c-labeling
4

Similar Publications

Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Facile Preparation of Carbon Nanotube-Based Skin-Like Pressure Sensors.

Small

December 2024

Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.

Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are fluorescent materials that have been developed as sensors for measuring the activities of enzymes. However, most sensors to date rely on end-point measurement and empirical functions to correlate enzyme concentrations with fluorescence responses. Less emphasis is put on analyzing time-dependent fluorescence responses and their connections with enzymatic kinetics.

View Article and Find Full Text PDF

Introduction: This study aimed to evaluate the antimicrobial efficacy of single-walled carbon nanotubes when combined with the commonly used intracanal medicaments by checking their zone of inhibition against .

Materials And Methods: The test materials were divided into five different groups, namely, Group I: single-walled carbon nanotubes; Group II: calcium hydroxide; Group III: chlorhexidine; Group IV: single-walled carbon nanotubes + calcium hydroxide; and Group V: single-walled carbon nanotubes + chlorhexidine. Five sterile Petri plates per group were inoculated with (); wells were made in the plates, one on each side, and a volume of 50 microliters of each solution was dispensed into individual wells using a pipette.

View Article and Find Full Text PDF

This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!