The citrate carrier (CiC), a nuclear-encoded protein located in the mitochondrial inner membrane, is a member of the mitochondrial carrier family. CiC plays an important role in hepatic lipogenesis, which is responsible for the efflux of acetyl-CoA from the mitochondria to the cytosol in the form of citrate, the primer for fatty acid and cholesterol synthesis. In addition, CiC is a key component of the isocitrate-oxoglutarate and the citrate-malate shuttles. CiC has been purified from various species and its reconstituted function characterized as well as its cDNA isolated and sequenced. CiC mRNA and/or CiC protein levels are high in liver, pancreas, and kidney, but are low or absent in brain, heart, skeletal muscle, placenta, and lungs. A reduction of CiC activity was found in diabetic, hypothyroid, starved rats, and in rats fed on a polyunsaturated fatty acid (PUFA)-enriched diet. Molecular analysis suggested that the regulation of CiC activity occurs mainly through transcriptional and post-transcriptional mechanisms. This review begins with an assessment of the current understanding of CiC structural and biochemical characteristics, underlying the structure-function relationship. Emphasis will be placed on the molecular basis of the regulation of CiC activity in coordination with fatty acid synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/iub.249 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!