Olmesartan medoxomil ameliorates sciatic nerve regeneration in diabetic rats.

Neuroreport

Biological Research Laboratories II, R&D Division Daiichi-Sankyo Co. Ltd., Tokyo, Japan.

Published: October 2009

To evaluate the effect of angiotensin II type1 receptor blocker on nerve regeneration delay in diabetic rats, nerve regeneration was monitored by a pinch test on the crushed sciatic nerves of streptozotocin-induced diabetic rats. Nerve regeneration was significantly delayed in diabetic rats and was partly ameliorated by treatment with olmesartan medoxomil (3 mg/kg/day, orally). In the ipsilateral dorsal root ganglia, the mRNA level of insulin-like growth factor-1 and ciliary neurotrophic factor (CNTF) was downregulated, whereas the mRNA level of neurotrophin-3 and CNTF receptor was upregulated. Olmesartan medoxomil significantly enhanced the CNTF expression. These results showed that angiotensin II type1 receptor blocker treatment is effective on nerve regeneration delay in diabetic animals and may provide an effective therapy for clinical diabetic neuropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0b013e32833283e6DOI Listing

Publication Analysis

Top Keywords

nerve regeneration
20
diabetic rats
16
olmesartan medoxomil
12
angiotensin type1
8
type1 receptor
8
receptor blocker
8
regeneration delay
8
delay diabetic
8
rats nerve
8
mrna level
8

Similar Publications

Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier.

View Article and Find Full Text PDF

Carpal Tunnel Syndrome (CTS) is a prevalent neuropathic disorder caused by chronic compression of the median nerve, leading to sensory and motor impairments. Conventional treatments, such as corticosteroid injections, wrist splinting, and surgical decompression, often fail to provide adequate outcomes for chronic or recurrent cases, emphasizing the need for innovative therapies. Hydrogels, highly biocompatible three-dimensional biomaterials with customizable properties, hold significant potential for CTS management.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

Reduce electrical overload via threaded Chinese acupuncture in nerve electrical therapy.

Bioact Mater

April 2025

Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.

Bioelectrical stimulation is a powerful technique used to promote tissue regeneration, but it can be hindered by an "electrical overload" phenomenon in the core region of stimulation. We develop a threaded microneedle electrode system that protects against "electrical overload" by delivering medicinal hydrogel microspheres into the core regions. The threaded needle body is coated with polydopamine and chitosan to enhance the adhesion of microspheres, which are loaded into the threaded grooves, allowing for their stereoscopic release in the core regions.

View Article and Find Full Text PDF

Isolation, culture, and characterization of primary endothelial cells and pericytes from mouse sciatic nerve.

J Neurosci Methods

January 2025

National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, 22332, Republic of Korea. Electronic address:

Background: The recovery of injured peripheral nerves relies on angiogenesis, where newly formed blood vessels act as pathways guiding Schwann cells across the wound to support axon regeneration. While some research has examined this process, the specific mechanisms of angiogenesis in peripheral nerve healing remain unclear. In vitro models are vital tools to investigate these mechanisms; however, no current in vitro culture methods exist for isolating vascular cells, such as endothelial cells (ECs) and pericytes, specifically from sciatic nerves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!