The present study investigated the expression of visfatin mRNA in various tissues of male and female broiler chickens. We also studied the effect of leptin, cerulenin, and food deprivation, known effectors of energy balance and insulin action, on visfatin gene expression in chickens. Using reverse transcription polymerase chain reaction (RT-PCR) and Northern blot analysis, we detected chicken visfatin mRNA transcript in the kidney, hypothalamus, gizzard, liver, pancreas, proventriculus, breast and leg muscle, ovary, testis, lung, intestine, adipose tissue, and heart. Expression of the visfatin gene in various tissues of male and female chickens was determined by real-time quantitative PCR and found to be tissue and sex dependent. In both sexes, compared to other tissues, the visfatin gene is highly expressed in the muscle. Females exhibited greater (P<0.001) abundance of visfatin mRNA in adipose tissue compared to males, whereas compared to females, males showed greater (P<0.05) visfatin mRNA abundance in the kidney. Also, the regulation of visfatin gene expression by leptin, cerulenin, and food deprivation is tissue specific. Leptin decreased (P<0.05) visfatin mRNA abundance in the liver and hypothalamus, but not in muscle. In contrast, cerulenin increased (P<0.01) visfatin gene expression in the liver and in muscle, but not in the hypothalamus. Interestingly, visfatin mRNA levels increased (P<0.05) in the liver after 24-h food deprivation, but not in muscle or in the hypothalamus of genetically selected fat and lean line chickens. Our results showed that the visfatin gene is ubiquitously expressed in chickens with greater abundance in muscle, and that it is regulated in a tissue-specific manner by energy balance-related factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.domaniend.2009.08.007 | DOI Listing |
J Cell Mol Med
December 2024
Biosciences Institute, Newcastle University Cancer Centre, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
Polycystic ovary syndrome (PCOS), a major cause of female infertility, affects 4%-20% of reproductive-age women. Metabolic and hormonal alterations are key features of PCOS, potentially raising the risk of endometrial (EC) and ovarian (OVCA) cancers. This systematic review aims to summarise the proposed molecular mechanisms involved in the association between PCOS and EC or OVCA.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Nicotinamide mononucleotide (NMN), a key precursor of NAD, is a promising nutraceutical due to its excellent efficacy in alleviating aging and disease. The bioproduction of NMN faces challenges related to incomplete metabolic engineering and insufficient metabolic flux. Here, we constructed an NMN synthesis pathway in BW25113 by deleting the competitive pathway genes and introducing three heterologous genes encoding the key enzymes nicotinamide phosphoribosyltransferase (NAMPT), phosphoribosyl pyrophosphate synthetase and an NMN transporter.
View Article and Find Full Text PDFAnn Anat
December 2024
Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy.
Visfatin is an adipokine with mediatory effects on inflammation. It is expressed at low levels in the pig stomach, but its role in the gastrointestinal (GI) tract is not well understood. This study explored visfatin expression and localisation in the stomach and duodenum of piglets fed varying levels of polyphenols derived from olive mill waste extract, known for their antioxidant and immunomodulatory properties.
View Article and Find Full Text PDFGenes Genomics
December 2024
School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
Biol Reprod
November 2024
Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland.
Visfatin regulates energy homeostasis, metabolism, inflammation, and reproduction via the hypothalamus-pituitary-ovary axis. Our previous study showed the visfatin gene and protein expression in the human placenta. This study aimed to investigate the in vitro effect of visfatin on the proliferation and apoptosis of placental JEG-3 and BeWo cells but also in villous explants collected from normal pregnancies and complicated by intrauterine growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!