Prenylation-deficient G protein gamma subunits disrupt GPCR signaling in the zebrafish.

Cell Signal

Carnegie Institution, Department of Embryology, Johns Hopkins University, Baltimore, MD 21218, United States.

Published: February 2010

Prenylation of G protein gamma (gamma) subunits is necessary for the membrane localization of heterotrimeric G proteins and for functional heterotrimeric G protein coupled receptor (GPCR) signaling. To evaluate GPCR signaling pathways during development, we injected zebrafish embryos with mRNAs encoding Ggamma subunits mutated so that they can no longer be prenylated. Low-level expression of these prenylation-deficient Ggamma subunits driven either ubiquitously or specifically in the primordial germ cells (PGCs) disrupts GPCR signaling and manifests as a PGC migration defect. This disruption results in a reduction of calcium accumulation in the protrusions of migrating PGCs and a failure of PGCs to directionally migrate. When co-expressed with a prenylation-deficient Ggamma, 8 of the 17 wildtype Ggamma isoforms individually confer the ability to restore calcium accumulation and directional migration. These results suggest that while the Ggamma subunits possess the ability to interact with G Beta (beta) proteins, only a subset of wildtype Ggamma proteins are stable within PGCs and can interact with key signaling components necessary for PGC migration. This in vivo study highlights the functional redundancy of these signaling components and demonstrates that prenylation-deficient Ggamma subunits are an effective tool to investigate the roles of GPCR signaling events during vertebrate development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788088PMC
http://dx.doi.org/10.1016/j.cellsig.2009.09.017DOI Listing

Publication Analysis

Top Keywords

gpcr signaling
20
ggamma subunits
16
prenylation-deficient ggamma
12
protein gamma
8
gamma subunits
8
pgc migration
8
calcium accumulation
8
wildtype ggamma
8
signaling components
8
signaling
7

Similar Publications

The GPCR-like protein Smoothened (Smo) plays a pivotal role in the Hedgehog (Hh) pathway. To initiate Hh signaling, active Smo binds to and inhibits the catalytic subunit of PKA in the primary cilium, a process facilitated by G protein-coupled receptor kinase 2 (Grk2). However, the precise regulatory mechanisms underlying this process, as well as the events preceding and following Smo activation, remain poorly understood.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) causes ischemic damage and cardiac remodeling that ultimately progresses into ischemic cardiomyopathy (ICM). Coronary revascularization reduces morbidity and mortality from an MI, however, reperfusion also induces oxidative stress that drives cardiac myocyte (CM) dysfunction and ICM. Oxidative stress in CMs leads to reactive oxygen species (ROS) production and mitochondrial damage.

View Article and Find Full Text PDF

Cannabinoid receptor 1 ligands: Biased signaling mechanisms driving functionally selective drug discovery.

Pharmacol Ther

January 2025

Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:

G protein-coupled receptors (GPCRs) adopt conformational states that activate or inhibit distinct signaling pathways, including those mediated by G proteins or β-arrestins. Biased signaling through GPCRs may offer a promising strategy to enhance therapeutic efficacy while reducing adverse effects. Cannabinoid receptor 1 (CB1), a key GPCR in the endocannabinoid system, presents therapeutic potential for conditions such as pain, anxiety, cognitive impairment, psychiatric disorders, and metabolic diseases.

View Article and Find Full Text PDF

Sevenless, the Drosophila homologue of ROS1 (University of Rochester Sarcoma) (herein, dROS1) is a receptor tyrosine kinase (RTK) essential for the differentiation of Drosophila R7 photoreceptor cells. Activation of dROS1 is mediated by binding to the extracellular region (ECR) of the GPCR (G protein coupled receptor) BOSS (Bride Of Sevenless) on adjacent cells. Activation of dROS1 by BOSS leads to subsequent downstream signaling pathways including SOS (Son of Sevenless).

View Article and Find Full Text PDF

Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!