Background: Ebola and Marburg viruses cause highly lethal hemorrhagic fevers in humans. Recently, bats of multiple species have been identified as possible natural hosts of Zaire ebolavirus (ZEBOV) in Gabon and Republic of Congo, and also of marburgvirus (MARV) in Gabon and Democratic Republic of Congo.

Methods: We tested 2147 bats belonging to at least nine species sampled between 2003 and 2008 in three regions of Gabon and in the Ebola epidemic region of north Congo for IgG antibodies specific for ZEBOV and MARV.

Results: Overall, IgG antibodies to ZEBOV and MARV were found in 4% and 1% of bats, respectively. ZEBOV-specific antibodies were found in six bat species (Epomops franqueti, Hypsignathus monstrosus, Myonycteris torquata, Micropteropus pusillus, Mops condylurus and Rousettus aegyptiacus), while MARV-specific antibodies were only found in Rousettus aegyptiacus and Hypsignathus monstrosus. The prevalence of MARV-specific IgG was significantly higher in R. aegyptiacus members captured inside caves than elsewhere. No significant difference in prevalence was found according to age or gender. A higher prevalence of ZEBOV-specific IgG was found in pregnant females than in non pregnant females.

Conclusion: These findings confirm that ZEBOV and MARV co-circulate in Gabon, the only country where bats infected by each virus have been found. IgG antibodies to both viruses were detected only in Rousettus aegyptiacus, suggesting that this bat species may be involved in the natural cycle of both Marburg and Ebola viruses. The presence of MARV in Gabon indicates a potential risk for a first human outbreak. Disease surveillance should be enhanced in areas near caves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761397PMC
http://dx.doi.org/10.1186/1471-2334-9-159DOI Listing

Publication Analysis

Top Keywords

rousettus aegyptiacus
16
igg antibodies
12
ebola marburg
8
marburg viruses
8
marv gabon
8
zebov marv
8
bat species
8
hypsignathus monstrosus
8
viruses
5
aegyptiacus
5

Similar Publications

Marburg virus (MARV) disease (MVD) is an uncommon yet serious viral hemorrhagic fever that impacts humans and non-human primates. In humans, infection by the MARV is marked by rapid onset, high transmissibility, and elevated mortality rates, presenting considerable obstacles to the development of vaccines and treatments. Bats, particularly , are suspected to be natural hosts of MARV.

View Article and Find Full Text PDF

Genomic and transmission dynamics of the 2024 Marburg virus outbreak in Rwanda.

Nat Med

December 2024

Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda.

The ongoing outbreak of Marburg virus disease in Rwanda marks the third largest historically, although it has shown the lowest fatality rate. Genomic analysis of samples from 18 cases identified a lineage with limited internal diversity, closely related to a 2014 Ugandan case. Our findings suggest that the Rwandan lineage diverged decades ago from a common ancestor shared with diversity sampled from bats in Uganda.

View Article and Find Full Text PDF
Article Synopsis
  • Bats are considered the primary hosts for many coronaviruses, particularly Betacoronaviruses, which can cause severe respiratory diseases in humans.
  • Research showed that Egyptian fruit bats were more susceptible to respiratory infections (like SARS-CoV-2) compared to oral infections, with significant differences in virus shedding and immune response.
  • The study suggests that SARS-CoV-2 is likely inactivated in the bats' stomachs, making oral infections less effective, highlighting the unique pathology of coronavirus infections in bats.
View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is an abundant RNA epitranscriptomic modification in eukaryotes. The m6A machinery includes cellular writer, eraser and reader proteins that regulate m6A. () (the Australian black flying fox) and () (the Egyptian fruit bat) are bats associated with several viral zoonoses yet neglected in the field of m6A epigenetics studies.

View Article and Find Full Text PDF

Experimental Infection of Egyptian Rousette Bats (Rousettus aegyptiacus) with Marburg Virus.

Methods Mol Biol

November 2024

Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA.

Article Synopsis
  • This chapter outlines the various procedures involved in studying experimental infections of Egyptian rousette bats with the Marburg virus.
  • It covers topics like planning and preparation for studies, the importance of personal protective equipment, and the overall methodologies used in these experiments.
  • The chapter concludes with a focus on specific techniques for serial sampling and sacrifice within the context of the research studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!