Commonly steady state analysis of microbial metabolism is performed under well defined physiological conditions in continuous cultures with fixed external rates. However, most industrial bioprocesses are operated in fed-batch mode under non-stationary conditions, which cannot be realized in chemostat cultures. A novel experimental setup-rapid media transition-enables steady state perturbation of metabolism on a time scale of several minutes in parallel to operating bioprocesses. For this purpose, cells are separated from the production process and transferred into a lab-scale stirred-tank reactor with modified environmental conditions. This new approach was evaluated experimentally in four rapid media transition experiments with Escherichia coli from a fed-batch process. We tested the reaction to different carbon sources entering at various points of central metabolism. In all cases, the applied substrates (glucose, succinate, acetate, and pyruvate) were immediately utilized by the cells. Extracellular rates and metabolome data indicate a metabolic steady state during the short-term cultivation. Stoichiometric analysis revealed distribution of intracellular fluxes, which differs drastically subject to the applied carbon source. For some reactions, the variation of flux could be correlated to changes of metabolite concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.290 | DOI Listing |
Plant Cell Physiol
January 2025
Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
Herein, an Ag@g-CN/MoS heterostructure is successfully synthesized for efficient solar-to-water oxidation. UV-vis DRS and steady-state PL analyses reveal the narrow band gap (2.10 eV) and efficient charge separation properties of the Ag nanoparticles and MoS, respectively.
View Article and Find Full Text PDFFront Neurorobot
January 2025
College of Engineering, Qufu Normal University, Rizhao, China.
Brain-computer interfaces (BCIs) have garnered significant research attention, yet their complexity has hindered widespread adoption in daily life. Most current electroencephalography (EEG) systems rely on wet electrodes and numerous electrodes to enhance signal quality, making them impractical for everyday use. Portable and wearable devices offer a promising solution, but the limited number of electrodes in specific regions can lead to missing channels and reduced BCI performance.
View Article and Find Full Text PDFJ Neurol Surg B Skull Base
February 2025
Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States.
The abducens nerve has a long, serpentine subarachnoid course with complex topographical relationships, rendering abducens nerve palsy the most common ocular motor cranial nerve palsy in adults and second most common in pediatric patients, with anatomical variants reported in the literature. Preoperative awareness of abducens nerve variant anatomy may help prevent inadvertent intraoperative injury. This study is a case report with a review of the abducens nerve anatomy and variants.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK.
In general, edge computing networks are based on a distributed computing environment and hence, present some difficulties to obtain an appropriate load balancing, especially under dynamic workload and limited resources. The conventional approaches of Load balancing like Round-Robin and Threshold-based load balancing fails in scalability and flexibility issues when applied to highly variable edge environments. To solve the problem of how to achieve steady-state load balance and provide dynamic adaption to edge networks, this paper proposes a new framework that using PCA and MDP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!