The replacement of terminal 2-benzimidazol-6-carboxypyridine (two internal rotational degrees of freedom) with 2-benzimidazol-8-hydroxyquinoline (one internal rotational degree of freedom) into segmental bis-tridentate ligands in going from L2 and [L3-2 H](2-) to [L12 b-2 H](2-) does not significantly affect the structures of the resulting binuclear lanthanide triple-stranded helical complexes [Ln(2)(L2)(3)](6+), [Ln(2)(L3-2 H)(3)], and [Ln(2)(L12 b-2 H)(3)] (palindromic helices, intermetallic contact distance approximately 9 A, helical pitch approximately 1.4 nm per turn). However, their thermodynamic assemblies are completely different in solution, as evidenced by the spectacular decrease of the effective concentrations by two orders of magnitude for [L12 b-2 H](2-). This key parameter in the [Ln(2)(L12 b-2 H)(n)] (n=2, 3) complexes is further abruptly modulated along the lanthanide series (Ln=La to Lu), which provides an unprecedented tool for 1) tuning the number of ligand strands in the final helicates, 2) selectively coordinating lanthanides in the various complexes, and 3) controlling the ratio of lanthanide-containing polymers over discrete assemblies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200902026DOI Listing

Publication Analysis

Top Keywords

binuclear lanthanide
8
internal rotational
8
[l12 b-2
8
b-2 h]2-
8
[ln2l12 b-2
8
simple chemical
4
chemical tuning
4
tuning effective
4
effective concentration
4
concentration selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!