Zonula occludens proteins (ZO) are postsynaptic density protein-95 discs large-zonula occludens (PDZ) domain-containing proteins that play a fundamental role in the assembly of tight junctions and establishment of cell polarity. Here, we show that the second PDZ domain of ZO-1 and ZO-2 binds phosphoinositides (PtdInsP) and we identified critical residues involved in the interaction. Furthermore, peptide and PtdInsP binding of ZO PDZ2 domains are mutually exclusive. Although lipid binding does not seem to be required for plasma membrane localisation of ZO-1, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P (2)) binding to the PDZ2 domain of ZO-2 regulates ZO-2 recruitment to nuclear speckles. Knockdown of ZO-2 expression disrupts speckle morphology, indicating that ZO-2 might play an active role in formation and stabilisation of these subnuclear structures. This study shows for the first time that ZO isoforms bind PtdInsPs and offers an alternative regulatory mechanism for the formation and stabilisation of protein complexes in the nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724457 | PMC |
http://dx.doi.org/10.1007/s00018-009-0156-6 | DOI Listing |
Biochem Biophys Res Commun
December 2024
College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China. Electronic address:
Regulated intramembrane proteolysis (RIP) is a fundamentally conserved mechanism involving sequential cleavage by a membrane-bound Site-1 protease (S1P) and a transmembrane Site-2 protease (S2P). In the opportunistic pathogen Pseudomonas aeruginosa, the alternate sigma factor σ activates alginate production and in turn is regulated by the MucABCD system. The anti-sigma factor MucA, which inhibits σ, is sequentially cleaved via RIP by AlgW (S1P) and MucP (S2P) respectively.
View Article and Find Full Text PDFProtein Sci
December 2024
Dipartimento di Scienze Biochimiche "A. Rossi Fanelli, " Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
Protein folding and unfolding experiments are interpreted under the assumption of microscopic reversibility, that is, that at equilibrium one process is the reverse of the other. Single-domain proteins illustrate the validity of such an interpretation, although reversibility does not necessarily hold under the different conditions typically used for folding and unfolding experiments. In fact, more complex proteins, which often exhibit irreversible unfolding, are generally considered not amenable to folding kinetics studies.
View Article and Find Full Text PDFStem Cell Res Ther
November 2024
Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Exosomes (Exos) from adipose-derived stem cells (ADSCs) have a high inclusion content and low immunogenicity, which helps to control inflammation and accelerate the healing of wounds. Unfortunately, the yield of exosomes is poor, which raises the expense and lengthens the treatment period in addition to impairing exosomes' therapeutic impact. Thus, one of the key problems that needs to be resolved in the current exosome study is increasing the exosome yield.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
PDZ domain mediated interactions with voltage-gated calcium (Ca) channel C-termini play important roles in localizing membrane Ca signaling. The first such interaction was described between the scaffolding protein Mint-1 and Ca2.2 in mammals.
View Article and Find Full Text PDFViruses
July 2024
Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!