Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C.

J Biol Chem

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

Published: November 2009

AI Article Synopsis

  • Cells exposed to DNA-damaging agents show a quick rise in subnuclear complexes with Rad51, suggesting a key role in DNA repair.
  • This study found significant increases in nuclear Rad51 levels in HeLa and HCT116 cells after exposure to ionizing radiation.
  • Rad51C, which has a nuclear localization signal, appears to facilitate Rad51's transport into the nucleus, as depleting Rad51C led to reduced levels of nuclear Rad51 following DNA damage.

Article Abstract

Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797266PMC
http://dx.doi.org/10.1074/jbc.M109.024646DOI Listing

Publication Analysis

Top Keywords

dna damage-induced
12
increase nuclear
12
nuclear rad51
12
damage-induced increase
12
rad51
8
dna damage
8
role rad51c
8
nuclear
8
nuclear transport
8
analyzed subcellular
8

Similar Publications

Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet radiation in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UV-C radiation. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured.

View Article and Find Full Text PDF

FBP1 controls liver cancer evolution from senescent MASH hepatocytes.

Nature

January 2025

Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.

Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH). While increasing HCC risk, MASH triggers p53-dependent hepatocyte senescence, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear.

View Article and Find Full Text PDF

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

PARylation facilitates the DNA damage repair of Phytophthora sojae in response to host ROS stress.

Int J Biol Macromol

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China. Electronic address:

Host plants and various fungicides combat plant pathogens by triggering the release of excessive ROS, leading to DNA damage and subsequent cell death. The mechanisms by which the Phytophthora sojae mitigates ROS stress induced by plant immune responses and fungicides are not well understood. This study investigates the role of PsPARP1A-mediated poly (ADP-ribosylation) (PARylation) in ROS-induced DNA damage responses (DDR).

View Article and Find Full Text PDF

Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibres. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!