Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
15-Acetyldeoxynivalenol (15-AcDON) is a low molecular weight sesquiterpenoid trichothecene mycotoxin associated with Fusarium ear rot of maize and Fusarium head blight of small grain cereals. The accumulation of mycotoxins such as deoxynivalenol (DON) and 15-AcDON within harvested grain is subject to stringent regulation as both toxins pose dietary health risks to humans and animals. These toxins inhibit peptidyltransferase activity, which in turn limits eukaryotic protein synthesis. To assess the ability of intracellular antibodies (intrabodies) to modulate mycotoxin-specific cytotoxocity, a gene encoding a camelid single domain antibody fragment (V(H)H) with specificity and affinity for 15-AcDON was expressed in the methylotropic yeast Pichia pastoris. Cytotoxicity and V(H)H immunomodulation were assessed by continuous measurement of cellular growth. At equivalent doses, 15-AcDON was significantly more toxic to wild-type P. pastoris than was DON. In turn, DON was orders of magnitude more toxic than 3-acetyldeoxynivalenol. Intracellular expression of a mycotoxin-specific V(H)H within P. pastoris conveyed significant (p = 0.01) resistance to 15-AcDON cytotoxicity at doses ranging from 20 to 100 mug.ml(-1). We also documented a biochemical transformation of DON to 15-AcDON to account for the attenuation of DON cytotoxicity at 100 and 200 mug.ml(-1). The proof of concept established within this eukaryotic system suggests that in planta V(H)H expression may lead to enhanced tolerance to mycotoxins and thereby limit Fusarium infection of commercial agricultural crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787364 | PMC |
http://dx.doi.org/10.1074/jbc.M109.045047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!