The genomes of six Listeria bacteriophages were sequenced and analyzed. Phages A006, A500, B025, P35, and P40 are members of the Siphoviridae and contain double-stranded DNA genomes of between 35.6 kb and 42.7 kb. Phage B054 is a unique myovirus and features a 48.2-kb genome. Phage B025 features 3' overlapping single-stranded genome ends, whereas the other viruses contain collections of terminally redundant, circularly permuted DNA molecules. Phages P35 and P40 have a broad host range and lack lysogeny functions, correlating with their virulent lifestyle. Phages A500, A006, and B025 integrate into bacterial tRNA genes, whereas B054 targets the 3' end of translation elongation factor gene tsf. This is the first reported case of phage integration into such an evolutionarily conserved genetic element. Peptide fingerprinting of viral proteins revealed that both A118 and A500 utilize +1 and -1 programmed translational frameshifting for generating major capsid and tail shaft proteins with C termini of different lengths. In both cases, the unusual +1 frameshift at the 3' ends of the tsh coding sequences is induced by overlapping proline codons and cis-acting shifty stops. Although Listeria phage genomes feature a conserved organization, they also show extensive mosaicism within the genome building blocks. Of particular interest is B025, which harbors a collection of modules and sequences with relatedness not only to other Listeria phages but also to viruses infecting other members of the Firmicutes. In conclusion, our results yield insights into the composition and diversity of Listeria phages and provide new information on their function, genome adaptation, and evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786548PMC
http://dx.doi.org/10.1128/JB.01041-09DOI Listing

Publication Analysis

Top Keywords

listeria bacteriophages
8
extensive mosaicism
8
programmed translational
8
translational frameshifting
8
p35 p40
8
listeria phages
8
listeria
5
phages
5
comparative genome
4
genome analysis
4

Similar Publications

Synergistic Enzybiotic Effect of a Bacteriophage Endolysin and an Engineered Glucose Oxidase Against .

Biomolecules

December 2024

Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Paterna, Valencia, Spain.

represents one of the main risks for food safety worldwide. Two enzyme-based antimicrobials (enzybiotics) have been combined in a novel treatment against this pathogenic bacterium, resulting in a powerful synergistic effect. One of the enzymes is an endolysin from phage vB_LmoS_188 with amidase activity (henceforth A10), and the other is an engineered version of glucose oxidase from (GOX).

View Article and Find Full Text PDF

Bacteriophages (phages) have a great potential to target specifically foodborne bacterial pathogens, particularly in packaging materials. However, incorporating phages into packaging surfaces requires stabilizing their structure and maintaining their infectivity during the papermaking process. In this study, several coating formulations containing various ratios of carboxymethyl cellulose, cationic starch, and glycerol were applied to a base paper to assess phage stability.

View Article and Find Full Text PDF

Bacteriocin CM175, a new high molecular weight and phage associated protein produced by Pediococcus pentosaceus CM175.

Int J Biol Macromol

December 2024

Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico. Electronic address:

Bacteriocins are proteins with antimicrobial capacity produced by different bacteria. Developing bacteriocin-based technologies could be an effective strategy to address current problems in the pharmaceutical and food industries, including limited therapeutic options against superbug infections, foodborne diseases, and food spoilage microorganisms. The lactic acid bacteria Pediococcus pentosaceus are known producers of bacteriocins.

View Article and Find Full Text PDF

Pet food is increasingly recognized as a significant vehicle for the transmission of foodborne pathogens to humans. The intimate association between pets and their owners, coupled with the rising trend of feeding pets raw and unprocessed foods, contributes substantially to this issue. Salmonella contamination in pet food can originate from raw materials and feed ingredients, the processing environment, and postprocessing handling and applications.

View Article and Find Full Text PDF

Commercial bacteriophage preparations for the control of Listeria monocytogenes and Shiga toxin-producing Escherichia coli in raw and pasteurized milk.

Food Microbiol

January 2025

Department of Animal Science, University of Connecticut, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA. Electronic address:

Listeria monocytogenes was the etiologic agent in nearly all recent outbreaks in North America attributed to pasteurized dairy products, whereas Escherichia coli O157 infections were responsible for most of the rare, yet serious complications from outbreaks involving unpasteurized dairy. This study determined the susceptibility of selected strains of L. monocytogenes and Shiga toxin-producing E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!