Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The firing of depleted uranium (DU) weapons during conflicts and military testing has resulted in the deposition of DU in a variety of sand-rich environments. In this study, DU-amended dune sand microcosm and column experiments were carried out to investigate the corrosion of DU and the transport of corrosion products. Under field-moist conditions, DU corroded to metaschoepite ((UO(2))(8)O(2)(OH)(12).(H(2)O)(10)) at a rate of 0.10+/-0.012 g cm(-2)y(-1). This loosely bound corrosion product detached easily from the coupon and became distributed heterogeneously within the sand. The corrosion of DU caused significant changes in the geochemical environment, with NO(3)(-) and Fe(III) reduction observed. Column experiments showed that transport of metaschoepite was mainly dependent on its dissolution and the subsequent interaction of the resulting dissolved uranyl (UO(2)(2+)) species with sand particles. The modelling results predict that the transport of U released from metaschoepite dissolution is retarded, due to a slowly desorbing surface species (first order desorption rate constant=5.0 (+/-1.0)x10(-8)s(-1)). The concentrations of U eluting from the metaschoepite column were orders of magnitude higher than the World Health Organisation's recommended maximum admissible concentration for U in drinking water of 15 microg L(-1). Therefore, a relatively high level of mobile U contamination would be expected in the immediate proximity of a corroding penetrator in a sand-rich environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2009.08.053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!