A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corrosion and transport of depleted uranium in sand-rich environments. | LitMetric

Corrosion and transport of depleted uranium in sand-rich environments.

Chemosphere

Biogeochemistry and Environmental Analytical Chemistry Research Group, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.

Published: November 2009

The firing of depleted uranium (DU) weapons during conflicts and military testing has resulted in the deposition of DU in a variety of sand-rich environments. In this study, DU-amended dune sand microcosm and column experiments were carried out to investigate the corrosion of DU and the transport of corrosion products. Under field-moist conditions, DU corroded to metaschoepite ((UO(2))(8)O(2)(OH)(12).(H(2)O)(10)) at a rate of 0.10+/-0.012 g cm(-2)y(-1). This loosely bound corrosion product detached easily from the coupon and became distributed heterogeneously within the sand. The corrosion of DU caused significant changes in the geochemical environment, with NO(3)(-) and Fe(III) reduction observed. Column experiments showed that transport of metaschoepite was mainly dependent on its dissolution and the subsequent interaction of the resulting dissolved uranyl (UO(2)(2+)) species with sand particles. The modelling results predict that the transport of U released from metaschoepite dissolution is retarded, due to a slowly desorbing surface species (first order desorption rate constant=5.0 (+/-1.0)x10(-8)s(-1)). The concentrations of U eluting from the metaschoepite column were orders of magnitude higher than the World Health Organisation's recommended maximum admissible concentration for U in drinking water of 15 microg L(-1). Therefore, a relatively high level of mobile U contamination would be expected in the immediate proximity of a corroding penetrator in a sand-rich environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2009.08.053DOI Listing

Publication Analysis

Top Keywords

corrosion transport
8
depleted uranium
8
sand-rich environments
8
column experiments
8
corrosion
5
transport depleted
4
uranium sand-rich
4
environments firing
4
firing depleted
4
uranium weapons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!