Benzylidene-2,4-thiazolidinedione derivatives with substitutions on the phenyl ring at the ortho or para positions of the thiazolidinedione (TZD) group were synthesized as PTP1B inhibitors with IC50 values in a low micromolar range. Compound 3e, the lowest, bore an IC50 of 5.0 microM. In vivo efficacy of 3e as an antiobesity and hypoglycemic agent was evaluated in a mouse model system. Significant improvement of glucose tolerance was observed. This compound also significantly suppressed weight gain and significantly improved blood parameters such as TG, total cholesterol and NEFA. Compound 3e was also found to activate peroxisome proliferator-activated receptors (PPARs) indicating multiple mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.09.020DOI Listing

Publication Analysis

Top Keywords

ptp1b inhibitors
8
thiazolidinedione derivatives
4
derivatives ptp1b
4
inhibitors antihyperglycemic
4
antihyperglycemic antiobesity
4
antiobesity effects
4
effects benzylidene-24-thiazolidinedione
4
benzylidene-24-thiazolidinedione derivatives
4
derivatives substitutions
4
substitutions phenyl
4

Similar Publications

A versatile and automatic on-line screening method: Transverse diffusion of laminar flow profiles-based capillary electrophoresis for exploring PTP1B inhibitors in natural products.

J Chromatogr A

December 2024

KU Leuven - University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49 3000 Leuven, Belgium. Electronic address:

Natural products (NPs) play an important role in drug discovery and drug development due to their diverse chemical properties and biological activities. In the present work, an on-line capillary electrophoresis (CE) method was developed and applied to screen protein tyrosine phosphatase 1B (PTP1B) inhibitors in NPs. As a generic technique, transverse diffusion of laminar flow profiles (TDLFP) was utilized to mix all reactants in the capillary for on-line enzymatic reaction.

View Article and Find Full Text PDF

KAHA ligation as a platform for the rapid discovery of Protein Tyrosine phosphatase 1B (PTP1B) inhibitors.

Bioorg Chem

December 2024

School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, PR China; Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.

We have successfully designed and assembled a 66-member library of protein tyrosine phosphatases (PTP) inhibitor candidates using α-ketoacid-hydroxylamine (KAHA) ligation. Subsequent in situ enzymatic screening revealed a potent hit (IC = 1.67 μM) against PTP1B, which displayed 6.

View Article and Find Full Text PDF

Pharmacological PTP1B inhibition rescues motor learning, neuroinflammation, and hyperglycaemia in a mouse model of Alzheimer's disease.

Exp Neurol

December 2024

Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, UK.

Background: Patients with Alzheimer's Disease (AD) frequently suffer from comorbidities such as type 2 diabetes mellitus (T2DM), accompanied by shared common pathologies such as increased inflammation and impaired glucose homeostasis. Beta-secretase 1 (BACE1), the rate limiting enzyme in AD associated beta-amyloid (Aβ) production, is also implicated in metabolic dysfunction and can increase central and peripheral protein levels of protein tyrosine phosphatase 1B (PTP1B). PTP1B is a validated target in diabetes and obesity, and is a neuroinflammatory regulator involved in degenerative processes.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1b (PTP1b) is a member of the protein tyrosine phosphatase (PTP) enzyme group and encoded as PTP1N gene. Studies have evidenced an overexpression of the PTP1b enzyme in metabolic syndrome, anxiety, schizophrenia, neurodegeneration, and neuroinflammation. PTP1b inhibitor negatively regulates insulin and leptin pathways and has been explored as an antidiabetic agent in various clinical trials.

View Article and Find Full Text PDF

The prevalence of small multi-target drugs containing a fluorinated aromatic moiety among approved drugs in the market is due to the unique properties of this halogen atom. With the aim to develop potent antidiabetic agents, a series of phenylsulfonic esters based on the conjugation of the 5-substituted 2-hydroxy-3-nitroacetophenones - with phenylsulfonyl chloride derivatives substituted with a fluorine atom or fluorine-containing (-CF or -OCF) group were prepared. Their structures were characterized using a combination of spectroscopic techniques complemented with a single-crystal X-ray diffraction (XRD) analysis on a representative example.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!