One of the fundamental mysteries of the human visual system is the continuous function of cone photoreceptors in bright daylight. As visual pigment is destroyed, or bleached, by light, cones require its rapid regeneration, which in turn involves rapid recycling of the pigment's chromophore. The canonical visual cycle for rod and cone pigments involves recycling of their chromophore from all-trans retinol to 11-cis retinal in the pigment epithelium, adjacent to photoreceptors. However, shortcomings of this pathway indicate the function of a second, cone-specific, mechanism for chromophore recycling. Indeed, biochemical and physiological studies on lower species have described a cone-specific visual cycle in addition to the long-known pigment epithelium pathway. Two important questions remain, however: what is the role of this pathway in the function of mammalian cones, and is it present in higher mammals, including humans? Here, we show that mouse, primate, and human neural retinas promote pigment regeneration and dark adaptation selectively in cones, but not in rods. This pathway supports rapid dark adaptation of mammalian cones and extends their dynamic range in background light independently of the pigment epithelium. This pigment-regeneration mechanism is essential for our daytime vision and appears to be evolutionarily conserved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762012 | PMC |
http://dx.doi.org/10.1016/j.cub.2009.07.054 | DOI Listing |
Sci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
Repetitive intramuscular injections of botulinum neurotoxin (BoNT) have become the treatment of choice for a variety of disease entities. But with the onset of BoNT therapy, the natural course of a disease is obscured. Nevertheless, the present study tries to analyze patients' "suspected" course of disease severity under the assumption that no BoNT therapy had been performed and compares that with the "experienced" improvement during BoNT treatment.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Physiotherapy Department, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, 35-215 Rzeszow, Poland.
Background: Cycling involves specific body positions that, when maintained for prolonged periods, may affect spinal curvature and increase the risk of pain-related issues. This study aimed to evaluate sagittal spinal curvatures, the prevalence of pain in spinal segments, and their interrelation among amateur road cyclists. Methoods: The research included 30 male participants aged 18-48 years.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan.
High-frequency ultrasound (HFUS) has been reported to be useful for the diagnosis of cutaneous diseases; however, its two-dimensional nature limits the value both in quantitative and qualitative evaluation. Three-dimensional (3D) visualization might help overcome the weakness of the currently existing HFUS. 3D-HFUS was newly developed and applied to various skin tumors and inflammatory hair diseases to assess its validity and advantages for dermatological use.
View Article and Find Full Text PDFJ Microsc
January 2025
Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay.
Apicomplexans, a large phylum of protozoan intracellular parasites, well known for their ability to invade and proliferate within host cells, cause diseases with major health and economic impacts worldwide. These parasites are responsible for conditions such as malaria, cryptosporidiosis, and toxoplasmosis, which affect humans and other animals. Apicomplexans exhibit complex life cycles, marked by diverse modes of cell division, which are closely associated with their pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!