Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The presentation of proteins on surfaces is fundamental to numerous cell culture and tissue engineering applications. While a number of physisorption and cross-linking methods exist to facilitate this process, few avoid denaturation of proteins or allow control over protein orientation, both of which are critical to the functionality of many signal proteins and ligands. Often recombinant protein sequences include a poly-histidine tag to facilitate purification. We utilize this sequence to anchor proteins to biosurfaces via a peptide bonded to the surface which conjugates with the poly-histidine tag in the presence of zinc rather than nickel, which is more traditionally used to conjugate poly-histidine tags to surfaces. We demonstrate that this strategy enables the display of proteins on 2D and 3D surfaces without compromising protein function through direct cross-linking or physisorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2009.08.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!