Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The objective of this work was to evaluate thiol-norbornene and thiol-ene-methacrylate systems as the resin phase of dental restorative materials and demonstrate their superior performance as compared to dimethacrylate materials.
Methods: Polymerization kinetics and overall functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Flexural strength and modulus were determined with a 3-point flexural test. Polymerization-induced shrinkage stress was measured with a tensometer.
Results: Thiol-ene polymer systems were demonstrated to exhibit advantageous properties for dental restorative materials in regards to rapid curing kinetics, high conversion, and low shrinkage and stress. However, both the thiol-norbornene and thiol-allyl ether systems studied here exhibit significant reductions in flexural strength and modulus relative to BisGMA/TEGDMA. By utilizing the thiol-ene component as the reactive diluent in dimethacrylate systems, high flexural modulus and strength are achieved while dramatically reducing the polymerization shrinkage stress. The methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems both exhibited equivalent flexural modulus (2.1+/-0.1 GPa) and slightly reduced flexural strength (95+/-1 and 101+/-3 MPa, respectively) relative to BisGMA/TEGDMA (flexural modulus; 2.2+0.1 GPa and flexural strength; 112+/-3 MPa). Both the methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems exhibited dramatic reductions in shrinkage stress (1.1+/-0.1 and 1.1+/-0.2 MPa, respectively) relative to BisGMA/TEGDMA (2.6+/-0.2 MPa).
Significance: The improved polymerization kinetics and overall functional group conversion, coupled with reductions in shrinkage stress while maintaining equivalent flexural modulus, result in a superior overall dental restorative material as compared to traditional bulk dimethacrylate resins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795114 | PMC |
http://dx.doi.org/10.1016/j.dental.2009.08.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!