Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticles have received a great deal of attention for producing new engineering applications due to their novel physicochemical characteristics. However, the broad application of nanomaterials has also produced concern for nanoparticle toxicity due to increased exposure from large-scale industry production. This study was conducted to investigate the potential neurotoxicity of manganese (Mn), silver (Ag), and copper (Cu) nanoparticles using the dopaminergic neuronal cell line, PC12. Selective genes associated with the dopaminergic system were investigated for expression changes and their correlation with dopamine depletion. PC12 cells were treated with 10 microg/ml Mn-40 nm, Ag-15 nm, or Cu-90 nm nanoparticles for 24 h. Cu-90 nanoparticles induced dopamine depletion in PC12 cells, which is similar to the effect induced by Mn-40 shown in a previous study. The expression of 11 genes associated with the dopaminergic system was examined using real-time RT-PCR. The expression of Txnrd1 was up-regulated after the Cu-90 treatment and the expression of Gpx1 was down-regulated after Ag-15 or Cu-90 treatment. These alterations are consistent with the oxidative stress induced by metal nanoparticles. Mn-40 induced a down-regulation of the expression of Th; Cu-90 induced an up-regulation of the expression of Maoa. This indicates that besides the oxidation mechanism, enzymatic alterations may also play important roles in the induced dopamine depletion. Mn-40 also induced a down-regulation of the expression of Park2; while the expression of Snca was up-regulated after Mn-40 or Cu-90 treatment. These data suggest that Mn and Cu nanoparticles-induced dopaminergic neurotoxicity may share some common mechanisms associated with neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2009.09.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!