Insulin and IGF-I prevent brain atrophy and DNA loss in diabetes.

Brain Res

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.

Published: December 2009

The aim of this study was to identify factors that regulate the bulk of adult brain mass, and test the hypothesis that concomitantly reduced insulin and insulin-like growth factor (IGF) levels are pathogenic for brain atrophy associated with impaired learning and memory in diabetes. Doses of insulin, or insulin plus IGF-I that were too small to prevent hyperglycemia were infused for 12 weeks into the brain lateral ventricles of streptozotocin-diabetic adult rats. Brain wet, water and dry weights were significantly decreased in diabetic rats; insulin prevented these decreases. The decrease in brain DNA and protein contents in diabetic rats was prevented by the combination treatment, but not by insulin alone. Levels of several glia- and neuron-associated proteins were reduced in diabetes; these reductions were also prevented by the combination treatment. Although hyperglycemia was not prevented in plasma or cerebrospinal fluid, insulin prevented brain atrophy but not bulk DNA loss in diabetes, whereas the combination prevented both. Insulin actively prevented the loss of brain water content as well. Brain atrophy is associated with concomitantly reduced levels of insulin and IGF in other disorders such as Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828498PMC
http://dx.doi.org/10.1016/j.brainres.2009.09.063DOI Listing

Publication Analysis

Top Keywords

brain atrophy
16
insulin
9
brain
9
insulin igf-i
8
dna loss
8
loss diabetes
8
concomitantly reduced
8
atrophy associated
8
diabetic rats
8
insulin prevented
8

Similar Publications

Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.

View Article and Find Full Text PDF

Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.

Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.

View Article and Find Full Text PDF

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Background: Schizophrenia is considered to be a condition that usually manifests at any age but commonly seen in young people and is associated with a genetic propensity in brain development.

Aim: The study explores the impact of aerobic training on brain architecture, hippocampal volume, cardiorespiratory parameters, and quality of life in young individuals with schizophrenia. The investigation focuses on the correlation between genetic predisposition, hippocampal atrophy, and diminished cardiorespiratory fitness, aiming to discern potential benefits of aerobic exercise on both physical and mental health outcomes.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!