Aims: Statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1.
Methods And Results: Urea, K(2)HPO(4), chitin and yeast extract were identified as significant components influencing chitinase production by Paenibacillus sp. D1 using Plackett-Burman method. Response surface methodology (central composite design) was applied for further optimization. The concentrations of medium components for improved chitinase production were as follows (g l(-1)): urea, 0.33; K(2)HPO(4), 1.17; MgSO(4), 0.3; yeast extract, 0.65 and chitin, 3.75. This statistical optimization approach led to the production of 93.2 +/- 0.58 U ml(-1) of chitinase.
Conclusions: The important factors controlling the production of chitinase by Paenibacillus sp. D1 were identified as urea, K(2)HPO(4), chitin and yeast extract. Statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 2.56-fold increase in chitinase production.
Significance And Impact Of The Study: The present investigation provides a report on statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1. Paenibacillus species are gram-positive, spore-forming bacteria with several PGPR and biocontrol potentials. However, only few reports concerning mycolytic enzyme production especially chitinases are available. Chitinase produced by Paenibacillus sp. D1 represents new source for biotechnological and agricultural use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1472-765X.2009.02731.x | DOI Listing |
J Pathol
January 2025
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
Chitinase 1 (CHIT1), as a chitin-specific hydrolase, significantly influences the progression of Alzheimer's disease (AD) through microglia-associated inflammation and amyloid beta (Aβ) plaque accumulation. However, the precise mechanism of CHIT1 action in AD remains uncertain. The effects of CHIT1 on cerebral blood flow (CBF), hippocampal volume, and cognitive function were investigated in APP/PS1 mice.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: The amyloid cascade hypothesis still dominates in Alzheimer's disease (AD), and the acceleration of the clearance efficiency of amyloid-β (Aβ) has been always considered as an effective treatment option to slow the occurrence and progression of AD.
Objective: This study aims to explore the role of zkscan3 and its related pathways in AD of the microglia-mediated pathogenesis, and whether the combined effect of drugs can exert neuroprotective function.
Methods: N9 mouse microglia and HT-22 mouse hippocampal neurons were randomly divided into 6 groups, qRT-PCR technique was used to detect the gene expression level of zkscan3 and the genes related to lysosome generation and function.
Int Microbiol
January 2025
Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Modern-day consumers are interested in highly nutritious and safe foods with corresponding organoleptic qualities. Such foods are increasingly subjected to various processing techniques which include the use of enzymes. These enzymes like amylases, lipases, proteases, xylanases, laccases, pullulanase, chitinases, pectinases, esterases, isomerases, and dehydrogenases could be derived from extremophilic organisms such as thermophiles, psychrophiles, acidophiles, alkaliphiles, and halophiles.
View Article and Find Full Text PDFPlanta
January 2025
Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.
DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!