Hydrogen production by photocatalytic reforming of aqueous solutions of ethanol and glycerol was studied with the use of impregnated and embedded CuO(x)/TiO(2) photocatalysts. Embedded CuO(x)@TiO(2) was prepared by a water-in-oil microemulsion method, which consists in the formation of Cu nanoparticles in the microemulsion followed by controlled hydrolysis and condensation of tetraisopropyl orthotitanate with the aim of covering the protected metal particles with a surrounding layer of porous titanium oxyhydroxide. Mild calcination leads to the complete removal of the organic residues, the crystallization of TiO(2), and an unavoidable oxidation of copper. Two reference samples were prepared by classical wet impregnation of preformed TiO(2) with different ratios of anatase, rutile, and brookite polymorphs. The two supports were prepared by sol-gel (TiO(2)-SG) and microemulsion (TiO(2)-ME) methods. Superior performances have been observed for the embedded system, which shows higher hydrogen production rates with respect to the impregnated systems using either ethanol or glycerol as sacrificial molecules. Deep structural characterization of the materials has been performed by coupling high resolution transmission electron microscopy (HRTEM), high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray absorption fine structure (XAFS), and electron paramagnetic resonance (EPR) techniques. Correlation between copper oxidation state and its dispersion and reactivity has been attempted. Finally, the stability of the CuO(x)/TiO(2) catalysts was also studied with respect to carbonaceous deposits and copper leaching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp907242q | DOI Listing |
Chemistry
January 2025
Lingnan Normal University, School of Chemistry and Chemical Engineering, CHINA.
The development of Pd-based bimetallic nanoalloys (NAs) with abundant active sites for achieving highly efficient electrocatalysis in alcohol oxidation deserves continuous attention. Herein, we utilized a facile visible-light-assisted liquid-phase method involving adjusting reaction time to generate active sites, successfully synthesizing one-dimensional (1D) PdAg NAs rich in defects. The optimized 1D PdAg NA exhibits remarkable electrochemical activity, stability, and antipoisonous properties in glycerol oxidation reaction (GOR) and ethanol oxidation reaction (EOR), far exceeding pure Pd and commercial Pd/C catalysts.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Faculty of Medicine, Nutrition and Dietetics School, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile.
Olive leaves are agro-industrial waste that pose an environmental management problem. However, they contain polyphenolic compounds with important bioactive properties beneficial to human. This study aimed to evaluate the effectiveness of two extraction technologies (pressurized liquid extraction and ultrasound-assisted extraction) combined with green solvents (pure water, 15% ethanol, and 15% glycerol) at 50 °C and 70 °C.
View Article and Find Full Text PDFSci Rep
December 2024
College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, People's Republic of China.
Ice wine is produced from concentrated grape juice obtained by the natural freezing and pressing of grapes. The high sugar content of this juice has an impact on fermentation. To investigate the impact of the initial sugar concentration on the fermentation of ice wine, the initial sugar concentration of Vidal ice grape juice was adjusted to 370, 450, 500 and 550 g/L by the addition of glucose.
View Article and Find Full Text PDFInt Microbiol
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Broccoli is rich in biologically active compounds, especially polyphenols and glucosinolates, known for their health benefits. Traditional extraction methods have limitations, leading to a shift towards using natural deep eutectic solvents (NADESs) to create high-quality extracts with enhanced biological activity. This study focuses on preparing broccoli extracts in NADES, enriched with polyphenols and glucosinolates, without additional purification steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!