The value of cyclic gem-bis(sulfone) 4 as a simple alkyl nucleophile equivalent in catalytic C-C bond-forming reactions is demonstrated. The 1,4-type nucleophilic additions of bis(sulfone) 4 to alpha,beta-unsaturated ketones take place by assistance of catalytic guanidine base. On the other hand, pyrrolidines are able to catalyze the conjugate addition of 4 to both enones and enals, likely by means of iminium ion activation. Upon exploration of the best chiral pyrrolidine catalyst, it has been found that the addition of 4 to enals catalyzed by diphenylprolinol silyl ether 10 proceeds with very high enantioselectivity (beta-aryl-substituted enals >95% ee; beta-alkyl substituted enals up to 94% ee; ee = enantiomeric excess). Further reductive desulfonation of adducts gives rise to the corresponding beta-methyl aldehydes, as well as the derived alcohols, acetals, and methyl esters after simple (Mg, MeOH) well-established protocols. Application of the procedure to the synthesis of biologically relevant phenethyl building blocks is shown. Most interestingly, alpha-alkylation of initially obtained bis(sulfone) adducts can be done even with less reactive alkylating reagents, such as long linear-chain or branched-chain alkyl halides. Accordingly, upon the desulfonation process, a general, experimentally simple and highly enantioselective access to beta-branched aldehydes, alcohols, or esters is possible. Further exploration of the method includes the use of chiral alpha,beta-unsaturated aldehydes derived from citronellal as the Michael acceptor partners. In these instances, the sense of the conjugate addition of 4 is controlled by the chirality of the pyrrolidine catalyst, thus allowing for a stereochemically predictable access to 1,3-dimethyl arrays, such as those present in deoxygenated polyketide-type natural products. The intramolecular variation of this technology by using doubly unsaturated aldehyde-ester 22 illustrated the site selectivity of the procedure and its potential for tandem processes leading to highly substituted polycyclic systems, such as 24.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200902094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!