The effect of voluntary sway control on the early and late components of the vestibular-evoked postural response.

Exp Brain Res

School of Sports and Exercise Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.

Published: March 2010

Electrical stimulation of the human vestibular nerve evokes a postural response which, unlike visually evoked sway, is unaffected by stimulus predictability. However, responses can be modified by changes in the level of background sway. Here, the effect of voluntary changes in sway magnitude upon the response to vestibular stimulation is investigated. Subjects were asked to stand either relaxed or still while stochastic vestibular stimulation (SVS) was applied to the mastoid processes (1 mA root-mean-square; 0.05-5 Hz). Calf muscle activity, ground-reaction force and sway responses were characterised in the frequency and time domains using cross-spectra and cross-correlations (CC), respectively. SVS induced coherent EMG, lateral force and sway responses. Differences in response gain between still and relaxed conditions largely reflected differences in signal power across frequencies, and peak EMG CC responses correlated strongly with background EMG changes. However, when data were normalised to account for changes in signal power, early EMG responses were almost identical between conditions, but after 232 ms, they diverged. Standing still caused heavy attenuation of the late component of the EMG response, reducing response duration by 825 ms. Similar effects were observed in force and sway, and all postural signals showed less phase lag with SVS below 2 Hz when standing still. These results demonstrate that the vestibular-evoked postural response consists of two parts: an early high-frequency component, which scales with background activity but is otherwise inflexible, and a late low-frequency component, which can be heavily attenuated by voluntary control resulting in earlier termination of the sway response.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-009-2017-9DOI Listing

Publication Analysis

Top Keywords

postural response
12
force sway
12
vestibular-evoked postural
8
response
8
vestibular stimulation
8
sway responses
8
signal power
8
emg responses
8
sway
7
responses
5

Similar Publications

: Acute lateral ankle sprain (ALAS) affects balance, often assessed by changes in traditional center of pressure (COP) parameters. Spatiotemporal measures of COP and time-to-boundary (TTB) analysis may offer improved sensitivity in detecting postural deviations associated with ALAS. However, the neurophysiological mechanism underlying these changes remains unknown.

View Article and Find Full Text PDF

Autonomous driving technology has led to an increasing preference for rearward seating postures. However, current restraint systems exhibit significant shortcomings in protecting reclined occupants. In this paper, based on the existing restraint system components, various restraint strategies were configured to enhance the protection for reclined occupants.

View Article and Find Full Text PDF

Introduction: In space, under weightlessness conditions, human brain activity is changed due to the shifting of body fluid and blood toward the cephalic region. This shifting leads to changes in cerebral hemodynamics and, consequently, neurophysiological function, which impacts mental functions like cognition and decision-making capabilities of space travelers. The present study reports the effect of acute exposure to simulated microgravity on cognitive functions and event-related potentials.

View Article and Find Full Text PDF

Background/objectives: Noninvasive brain stimulation (NIBS) can boost motor recovery after a stroke. Certain movement phases are more responsive to NIBS, so a system that auto-detects these phases would optimize stimulation timing. This study assessed the effectiveness of various machine learning models in identifying movement phases in hemiparetic individuals undergoing simultaneous NIBS and EEG recordings.

View Article and Find Full Text PDF

Current update on the neurological manifestations of long COVID: more questions than answers.

EXCLI J

November 2024

Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece.

Since the outbreak of the COVID-19 pandemic, there has been a global surge in patients presenting with prolonged or late-onset debilitating sequelae of SARS-CoV-2 infection, colloquially termed long COVID. This narrative review provides an updated synthesis of the latest evidence on the neurological manifestations of long COVID, discussing its clinical phenotypes, underlying pathophysiology, while also presenting the current state of diagnostic and therapeutic approaches. Approximately one-third of COVID-19 survivors experience prolonged neurological sequelae that persist for at least 12-months post-infection, adversely affecting patients' quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!