A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strained arrays of colloidal nanoparticles: conductance and magnetoresistance enhancement. | LitMetric

Colloidal nanoparticles are very popular as building blocks of functional arrays for electronic and optical applications. However, there is a problem in achieving electrical conductivity in such nanoarrays due to their molecular shells. These shells, which are inherent to colloidal particles, physically separate the nanoparticles in an array and act as very effective insulators. Post-assembly thinning of the shells is therefore required to enhance the array conductivity to a sensible value. Here, we introduce a conceptually new approach to the thinning, using compressive stress applied to the array by the supporting matrix. The stress arises from polymerization-induced shrinkage of the matrix as an integral step during device assembly. Using arrays of oleic-acid-covered magnetite nanoparticles in conjunction with an HDDA-polymer (HDDA: 1,6-hexanediol diacrylate) matrix, we have achieved a significant steady current in the array along with an unprecedented value of the magnetoresistance. Our results serve as a proof-of-concept for other colloidal nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/42/425607DOI Listing

Publication Analysis

Top Keywords

colloidal nanoparticles
12
nanoparticles
5
strained arrays
4
colloidal
4
arrays colloidal
4
nanoparticles conductance
4
conductance magnetoresistance
4
magnetoresistance enhancement
4
enhancement colloidal
4
nanoparticles popular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!