PvdQ, an acylase from Pseudomonas aeruginosa PAO1, has been shown to have at least two functions. It can act as a quorum quencher due to its ability to degrade long-chain N-acylhomoserine lactones (AHLs), e.g. 3-oxo-C12-HSL, leading to a decrease in virulence factors. In addition, PvdQ is involved in iron homeostasis by playing a role in the biosynthesis of pyoverdine, the major siderophore of P. aeruginosa. In accordance with earlier studies on RNA level, we could show at the protein level that PvdQ is only expressed when iron is present at very low concentrations. We therefore set out to investigate the two functions of PvdQ under iron-limiting conditions. Gene deletion of pvdQ does not affect growth of P. aeruginosa but abrogates pyoverdine production, and results in an accumulation of 3-oxo-C12-HSL. Phenotypic analyses of our DeltapvdQ mutant at low iron concentrations revealed that this mutant is impaired in swarming motility and biofilm formation. Additionally, a plant and a Caenorhabditis elegans infection model demonstrated that the deletion of pvdQ resulted in reduced virulence. None of the phenotypes in the present study could be linked to the presence or absence of AHLs. These results clearly indicate that under iron-limiting conditions PvdQ plays a major role in swarming motility, in biofilm development and in infection that is more likely to be linked to the pyoverdine pathway rather than the LasI/LasR/3-oxo-C12-HSL quorum-sensing circuit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.030973-0 | DOI Listing |
Plant Mol Biol
October 2024
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear.
View Article and Find Full Text PDFMethods Enzymol
August 2024
Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States. Electronic address:
Iron is a crucial secondary metabolite for bacterial proliferation, but its bioavailability under infection conditions is limited by the low solubility of ferric ion and the host's ability to sequester iron by protein chelation. In these iron limiting conditions, bacteria produce and secrete low molecular weight ferric ion chelators, siderophores, to scavenge host iron. Iron bound siderophores are recognized by surface displayed receptors and internalized by active transport preceding the liberation of the iron payload by reduction or cleavage of the siderophore.
View Article and Find Full Text PDFMicrobiologyopen
August 2024
Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA.
The understanding of how central metabolism and fermentation pathways regulate antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is still incomplete. Our study reveals that B. fragilis encodes two iron-dependent, redox-sensitive regulatory pirin protein genes, pir1 and pir2.
View Article and Find Full Text PDFJ Agric Food Chem
August 2024
Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
Siderophores are small molecule iron chelators. The entomopathogenic fungus produces a plethora of siderophores under iron-limiting conditions. In this study, a siderophore biosynthesis pathway, akin to the general pathway observed in filamentous fungi, was revealed in .
View Article and Find Full Text PDFFront Microbiol
July 2024
Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
is a common colonizer of the skin and nares of healthy individuals, but also a major cause of severe human infections. During interaction with the host, pathogenic bacteria must adapt to a variety of adverse conditions including nutrient deprivation. In particular, they encounter severe iron limitation in the mammalian host through iron sequestration by haptoglobin and iron-binding proteins, a phenomenon called "nutritional immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!