A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian reconstruction of natural images from human brain activity. | LitMetric

Bayesian reconstruction of natural images from human brain activity.

Neuron

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

Published: September 2009

Recent studies have used fMRI signals from early visual areas to reconstruct simple geometric patterns. Here, we demonstrate a new Bayesian decoder that uses fMRI signals from early and anterior visual areas to reconstruct complex natural images. Our decoder combines three elements: a structural encoding model that characterizes responses in early visual areas, a semantic encoding model that characterizes responses in anterior visual areas, and prior information about the structure and semantic content of natural images. By combining all these elements, the decoder produces reconstructions that accurately reflect both the spatial structure and semantic category of the objects contained in the observed natural image. Our results show that prior information has a substantial effect on the quality of natural image reconstructions. We also demonstrate that much of the variance in the responses of anterior visual areas to complex natural images is explained by the semantic category of the image alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553889PMC
http://dx.doi.org/10.1016/j.neuron.2009.09.006DOI Listing

Publication Analysis

Top Keywords

visual areas
20
natural images
16
anterior visual
12
fmri signals
8
signals early
8
early visual
8
areas reconstruct
8
complex natural
8
encoding model
8
model characterizes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!