The outflow tract myocardium and other regions corresponding to the location of the major coronary vessels of the developing chicken heart, display a high level of hypoxia as assessed by the hypoxia indicator EF5. The EF5-positive tissues were also specifically positive for nuclear-localized hypoxia inducible factor-1 alpha (HIF-1alpha), the oxygen-sensitive component of the hypoxia inducible factor-1 (HIF-1) heterodimer. This led to our hypothesis that there is a "template" of hypoxic tissue that determines the stereotyped pattern of the major coronary vessels. In this study, we disturbed this template by altering ambient oxygen levels (hypoxia 15%; hyperoxia 75-40%) during the early phases of avian coronary vessel development, in order to alter tissue hypoxia, HIF-1alpha protein expression, and its downstream target genes without high mortality. We also altered HIF-1alpha gene expression in the embryonic outflow tract cardiomyocytes by injecting an adenovirus containing a constitutively active form of HIF-1alpha (AdCA5). We assayed for coronary anomalies using anti-alpha-smooth muscle actin immunohistology. When incubated under abnormal oxygen levels or injected with a low titer of the AdCA5, coronary arteries displayed deviations from their normal proximal connections to the aorta. These deviations were similar to known clinical anomalies of coronary arteries. These findings indicated that developing coronary vessels may be subject to a level of regulation that is dependent on differential oxygen levels within cardiac tissues and subsequent HIF-1 regulation of gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724469PMC
http://dx.doi.org/10.1002/dvdy.22089DOI Listing

Publication Analysis

Top Keywords

coronary vessels
12
oxygen levels
12
factor-1 alpha
8
coronary
8
coronary vessel
8
outflow tract
8
major coronary
8
hypoxia inducible
8
inducible factor-1
8
gene expression
8

Similar Publications

Background: The mechanistic association between the hydraulic forces generated during contrast injection and the risk of coronary injury is poorly understood. In this study, we sought to evaluate whether contrast injections increase intracoronary pressures beyond resting levels and estimate the risk of hydraulic propagation of coronary dissections.

Methods: This is a prospective, single-arm, multicenter study that included patients with nonculprit, non-flow-limiting coronaries.

View Article and Find Full Text PDF

Background: The coronary atrial circulation is the network of vessels that supply blood to the atria, originating from the left circumflex and right coronary arteries. Current descriptions of this arterial system are based on anatomical studies with a limited number of patients, predominantly male. In addition, there is a lack of consensus its angiographic nomenclature.

View Article and Find Full Text PDF

Background: Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis imaging quantitative CT, AI-QCT).

Methods: The study included 208 patients with suspected coronary artery disease (CAD) undergoing CCTA in Perfusion Imaging and CT Coronary Angiography With Invasive Coronary Angiography-1.

View Article and Find Full Text PDF

Purpose: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ECG-gated coronary CT angiography (CCTA) scans.

Methods: From a database of 6293 CCTA scans, we used pre-existing curved multiplanar reformations (CMR) images of the LAD, RCA and LCX arteries to create end-to-end deep-learning models for the detection of moderate or severe stenoses. We preprocessed the images by exploiting domain knowledge and employed a transfer learning approach using EfficientNet, ResNet, DenseNet and Inception-ResNet, with a class-weighted strategy optimised through cross-validation.

View Article and Find Full Text PDF

Background: The personalized, free-breathing, heart rate-dependent computed tomography angiography (CTA) protocol can significantly reduce the utilization of contrast medium (CM). This proves especially beneficial for patients with chronic obstructive pulmonary disease (COPD) undergoing coronary artery CTA examinations.

Objective: The aim of this study was to evaluate the feasibility of a personalized CT scanning protocol that was tailored to patients' heart rate and free-breathing for coronary CTA of patients with COPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!