A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (K(A)). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound excitatory postsynaptic potentials (EPSPs). The fast activation and inactivation of K(A) lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of K(A) by synaptic inputs of different levels of synchronicity. We find that K(A) participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that K(A) suppresses input mimicking the activity of a fast ripple. Finally, we show that the degree of selectivity of K(A) can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting K(A) might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. Wealso suggest that compounds changing K(A)-kinetics may be used to pharmacologically improve epileptic status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222850 | PMC |
http://dx.doi.org/10.1002/hipo.20694 | DOI Listing |
Elife
December 2024
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
Unsupervised segmentation in biological and non-biological images is only partially resolved. Segmentation either requires arbitrary thresholds or large teaching datasets. Here, we propose a spatial autocorrelation method based on Local Moran's coefficient to differentiate signal, background, and noise in any type of image.
View Article and Find Full Text PDFJ Physiol
December 2024
Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
Kv channels generate A-type current known to regulate neuronal excitability. Its role in processing timing information is understudied, especially in the auditory system where temporal information is crucial for hearing. In the cochlear nucleus, principal bushy neurons are specialized for temporal processing with distinct biophysical properties owing to their expression of various voltage-gated ion channels.
View Article and Find Full Text PDFCell Rep
November 2024
Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address:
The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate.
View Article and Find Full Text PDFeNeuro
November 2024
Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
Relationships among membrane currents allow central pattern generator (CPG) neurons to reliably drive motor programs. We hypothesize that continually active CPG neurons utilize activity-dependent feedback to correlate expression of ion channel genes to balance essential membrane currents. However, episodically activated neurons experience absences of activity-dependent feedback and, thus, presumably employ other strategies to coregulate the balance of ionic currents necessary to generate appropriate output after periods of quiescence.
View Article and Find Full Text PDFLocomotor behaviors are performed by organisms throughout life, despite developmental changes in cellular properties, neural connectivity, and biomechanics. The basic rhythmic activity in the central nervous system that underlies locomotion is thought to be generated via a complex balance between network and intrinsic cellular properties. Within mature mammalian spinal locomotor circuitry, we have yet to determine which properties of spinal interneurons (INs) are critical to rhythmogenesis and how they change during development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!