Neuron-glial interactions involved in the regulation of glutamine synthetase.

Glia

Laboratory of Molecular Biology, NINDS, NIH, Bethesda, Maryland 20892.

Published: December 1990

Cocultures of rat cortical astrocytes with cerebellar granule cell neurons, but not a variety of other cell types tested, resulted in an induction of glutamine synthetase (GS) mRNA over the basal levels expressed in pure astrocyte cultures. This induction involved both contact- and noncontact-mediated events and may be a result of astroglial differentiation promoted by interactions with the primary neurons. Astrocytes grown in the presence of the granule neurons (but not the other cell types tested) exhibited a more complex, process-bearing morphology typical of more differentiated cells. In addition, glial cell proliferation was inhibited not only by the presence of live granule cells, but also by fixed neurons and neuronal membranes. Under the same experimental conditions, GS mRNA was increased (two- to threefold) compared with the expression observed in pure astrocyte cultures. Because of the role of GS in glutamate metabolism and the influence of the glutamatergic granule neurons on glial GS mRNA levels, the effect of exogenous glutamate was examined. The addition of 100 microM glutamate to the culture medium resulted in an increase in GS mRNA in the astrocyte cultures similar to that observed in the cocultures, where the addition of glutamate did not further increase GS mRNA levels. These results provide further evidence for the importance of neuron-glial interactions in the regulation of glial gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.440030510DOI Listing

Publication Analysis

Top Keywords

astrocyte cultures
12
neuron-glial interactions
8
glutamine synthetase
8
cell types
8
types tested
8
pure astrocyte
8
granule neurons
8
mrna levels
8
increase mrna
8
neurons
5

Similar Publications

Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).

Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.

View Article and Find Full Text PDF

NLRX1 limits inflammatory neurodegeneration in the anterior visual pathway.

J Neuroinflammation

January 2025

Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.

Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.

View Article and Find Full Text PDF

The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer's disease mice.

Alzheimers Res Ther

January 2025

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.

Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!