The vast majority of microbes in nature currently remain inaccessible to traditional cultivation methods. Over the past decade, culture-independent environmental genomic (i.e. metagenomic) approaches have emerged, enabling researchers to bridge this cultivation gap by capturing the genetic content of indigenous microbial communities directly from the environment. To this end, genomic DNA libraries are constructed using standard albeit artful laboratory cloning techniques. Here we describe the construction of a large insert environmental genomic fosmid library with DNA derived from the vertical depth continuum of a seasonally hypoxic fjord. This protocol is directly linked to a series of connected protocols including coastal marine water sampling [1], large volume filtration of microbial biomass [2] and a DNA extraction and purification protocol [3]. At the outset, high quality genomic DNA is end-repaired with the creation of 5 -phosphorylated blunt ends. End-repaired DNA is subjected to pulsed-field gel electrophoresis (PFGE) for size selection and gel extraction is performed to recover DNA fragments between 30 and 60 thousand base pairs (Kb) in length. Size selected DNA is purified away from the PFGE gel matrix and ligated to the phosphatase-treated blunt-end fosmid CopyControl vector pCC1 (EPICENTRE http://www.epibio.com/item.asp?ID=385). Linear concatemers of pCC1 and insert DNA are subsequently headfull packaged into phage particles by lambda terminase, with subsequent infection of phage-resistant E. coli cells. Successfully transduced clones are recovered on LB agar plates under antibiotic selection and archived in 384-well plate format using an automated colony picking robot (Qpix2, GENETIX). The current protocol draws from various sources including the CopyControl Fosmid Library Production Kit from EPICENTRE and the published works of multiple research groups [4-7]. Each step is presented with best practice in mind. Whenever possible we highlight subtleties in execution to improve overall quality and efficiency of library production. The whole process of fosmid library production and automated colony picking takes at least 7-10 days as there are many incubation steps included. However, there are several stopping points possible which are mentioned within the protocol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150051PMC
http://dx.doi.org/10.3791/1387DOI Listing

Publication Analysis

Top Keywords

library production
16
environmental genomic
12
fosmid library
12
large insert
8
insert environmental
8
dna
8
genomic dna
8
automated colony
8
colony picking
8
genomic
5

Similar Publications

Coverage bias in small molecule machine learning.

Nat Commun

January 2025

Chair for Bioinformatics, Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany.

Small molecule machine learning aims to predict chemical, biochemical, or biological properties from molecular structures, with applications such as toxicity prediction, ligand binding, and pharmacokinetics. A recent trend is developing end-to-end models that avoid explicit domain knowledge. These models assume no coverage bias in training and evaluation data, meaning the data are representative of the true distribution.

View Article and Find Full Text PDF

Synthesis and pharmacological evaluation of natural product diphyllin derivatives against head and neck squamous cell carcinoma.

Eur J Med Chem

December 2024

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:

Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors, but clinical drug treatments are limited. The natural product diphyllin was identified as a lead compound suppressing the proliferation of HNSCC cells through phenotypic screening of natural product library. However, further developments of diphyllin as an anti-HNSCC agent were restricted by the weak bioactivity and poor metabolic stability.

View Article and Find Full Text PDF

Identification of mitoxantrone as a potent inhibitor of CDK7/Cyclin H via structure-based virtual screening and In-Vitro validation by ADP-Glo kinase assay.

Bioorg Chem

December 2024

Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Cyclin-dependent kinases, CDK7 and CDK9 play critical roles in cancer by regulating transcriptional processes essential for cell proliferation and survival. Their dysregulation leads to aberrant gene expression, promoting oncogenic pathways and contributing to tumor growth and progression. This study aimed to identify a new chemotype for CDK7/9 inhibitors using a structure-based virtual screening approach.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants with a widespread presence in diverse environmental contexts. Transformation processes of PAHs via degradation and biotransformation have parallels in humans, animals, plants, fungi, and bacteria. Mapping the transformation products of PAHs is therefore crucial for assessing their toxicological impact and developing effective monitoring strategies.

View Article and Find Full Text PDF

Melanoma is an aggressive tumor that is challenging to treat. Talimogene laherparepvec (T-VEC), the first oncolytic virus treatment approved by the US Food and Drug Administration to treat unresectable melanoma, was recently used in recurrent tumors after initial surgery. Our network meta-analysis aimed to compare T-VEC treatment of metastatic melanoma with treatment of granulocyte-macrophage colony-stimulating factor (GM-CSF) and control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!