Several lines of research indicate that emotional and motivational information may be useful in guiding the allocation of attentional resources. Two areas of the frontal lobe that are particularly implicated in the encoding of motivational information are the orbital prefrontal cortex (PFo) and the dorsomedial region of prefrontal cortex, specifically the anterior cingulate sulcus (PFcs). However, it remains unclear whether these areas use this information to influence spatial attention. We used single-unit neurophysiology to examine whether, at the level of individual neurons, there was evidence for integration between reward information and spatial attention. We trained two subjects to perform a task that required them to attend to a spatial location across a delay under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. We found little evidence for encoding of the spatial location in either PFo or PFcs. In contrast, both areas encoded the expected reward. Furthermore, PFo consistently encoded reward more quickly than PFcs, although reward encoding was subsequently more prevalent and stronger in PFcs. These results suggest a differential contribution of PFo and PFcs to reward encoding, with PFo potentially more important for initially determining the value of rewards predicted by sensory stimuli. They also suggest that neither PFo nor PFcs play a direct role in the control of spatial attention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804408 | PMC |
http://dx.doi.org/10.1152/jn.00273.2009 | DOI Listing |
J Math Biol
January 2025
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.
View Article and Find Full Text PDFBrain Lang
January 2025
Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China. Electronic address:
Hemispheric specialization of different functions is proposed to confer evolutionary benefits, yet the behavioral impacts of lateralization and its cognitive and neural mechanisms remain unclear. This study investigated the effect of lateralization pattern between language and spatial attention on dual-task performance and its association with callosal connectivity. Functional lateralization was assessed using fMRI verbal fluency and landmark tasks, and interhemispheric connections were evaluated through diffusion-weighted imaging.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
JK Laxmipat University, Jaipur, Rajasthan, India.
Marine pollution due to oil spills presents major risks to coastal areas and aquatic life, leading to serious environmental health concerns. Oil Spill detection using SAR data has transitioned from traditional segmentation to a variety of machine learning & deep learning models like UNET proving its efficiency for the task. This research paper proposes a GSCAT-UNET model for efficient oil spill detection and discrimination from lookalikes.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China.
In the Imbalanced Multivariate Time Series Classification (ImMTSC) task, minority-class instances typically correspond to critical events, such as system faults in power grids or abnormal health occurrences in medical monitoring. Despite being rare and random, these events are highly significant. The dynamic spatial-temporal relationships between minority-class instances and other instances make them more prone to interference from neighboring instances during classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!