Glutamate controls growth rate and branching of dopaminergic axons.

J Neurosci

Departments of Neurology, Columbia University School of Medicine, New York State Psychiatric Institute, New York, 10032, USA.

Published: September 2009

Dopamine-releasing neurons of the substantia nigra pars compacta produce an extraordinarily dense and expansive plexus of innervation in the striatum converging with glutamatergic corticostriatal and thalamostriatal axon terminals at dendritic spines of medium spiny neurons. Here, we investigated whether glutamatergic signaling promotes arborization and growth of dopaminergic axons. In postnatal ventral midbrain cultures, dopaminergic axons rapidly responded to glutamate stimulation with accelerated growth and growth cone splitting when NMDA and AMPA/kainate receptors were activated. In contrast, when AMPA/kainate receptors were selectively activated, axon growth rate was decreased. To address whether this switch in axonal growth response was mediated by distinct calcium signals, we used calcium imaging. Combined NMDA and AMPA/kainate receptor activation elicited calcium signals in axonal growth cones that were mediated by calcium influx through L-type voltage-gated calcium channels and ryanodine receptor-induced calcium release from intracellular stores. AMPA/kainate receptor activation alone elicited calcium signals that were solely attributable to calcium influx through L-type calcium channels. We found that inhibitors of calcium/calmodulin-dependent protein kinases prevented the NMDA receptor-dependent axonal growth acceleration, whereas AMPA/kainate-induced axonal growth decrease was blocked by inhibitors of calcineurin and by increased cAMP levels. Our data suggest that the balance between NMDA and AMPA/kainate receptor activation regulates the axonal arborization pattern of dopamine axons through the activation of competing calcium-dependent signaling pathways. Understanding the mechanisms of dopaminergic axonal arborization is essential to the development of treatments that aim to restore dopaminergic innervation in Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818361PMC
http://dx.doi.org/10.1523/JNEUROSCI.2927-09.2009DOI Listing

Publication Analysis

Top Keywords

axonal growth
16
dopaminergic axons
12
nmda ampa/kainate
12
calcium signals
12
ampa/kainate receptor
12
receptor activation
12
growth
9
calcium
9
growth rate
8
ampa/kainate receptors
8

Similar Publications

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

Astrocytoma is a common type of glioma and a frequent cause of brain tumour-related epilepsy. Although the link between glioma and epilepsy is well established, the precise mechanisms underlying epileptogenesis in astrocytoma remain poorly understood. In this study, we performed proteomic analysis of astrocytoma tissue from patients with and without seizures using mass spectrometry-based techniques.

View Article and Find Full Text PDF

Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration.

Adv Healthc Mater

January 2025

Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.

View Article and Find Full Text PDF

Deer antler blastema progenitor cells (ABPCs) are promising for regenerative medicine due to their role in annual antler regeneration, the only case of complete organ regeneration in mammals. ABPC-derived signals show great potential for promoting regeneration in tissues with limited natural regenerative ability. Our findings demonstrate the capability of extracellular vesicles from ABPCs (EVs) to repair spinal cord injury (SCI), a condition with low regenerative capacity.

View Article and Find Full Text PDF

The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!