A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct inhibitory neurons exert temporally specific control over activity of a motoneuron receiving concurrent excitation and inhibition. | LitMetric

Recent work suggests that concurrent excitation and inhibition originating in central pattern generators (CPGs) may be used to control rhythmic motoneuronal activity. The specific roles that the inhibition plays in such cases are not well understood, however, in part because of the lack of identification of presynaptic inhibitory neurons. Here we demonstrate that, in the Aplysia feeding CPG, inhibitory inputs may be critical for flexible control of the activity of motoneurons in different forms of behavior. The feeding CPG generates ingestive and egestive motor programs, differing in the high and low activity, respectively, of the motoneuron B8 during the retraction phase of the programs. We show that, during retraction, B8 receives concurrent excitation and inhibition that produces a high-conductance state. The inhibition originates in two types of CPG neurons, B4/5 and B70, that are more active in egestion than ingestion and play a role in suppressing B8 activity during egestion. In turn, the activities of both B4/5 and B70 are suppressed by the ingestion-promoting descending interneuron CBI-3 (for cerebral-buccal interneuron 3). Thus, concurrent excitation and inhibition may be an effective means of controlling motoneuronal activity in a behavior-dependent manner. More detailed analyses reveal, furthermore, that B4/5 and B70 exert complementary actions by acting preferentially in the early and late part of retraction, respectively. Thus, the use of multiple neurons to generate inhibitory inputs to motoneurons that receive concurrent excitation and inhibition brings an additional level of flexibility that allows a temporally specific control of motoneuronal activity within a single phase of motor programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796268PMC
http://dx.doi.org/10.1523/JNEUROSCI.3051-09.2009DOI Listing

Publication Analysis

Top Keywords

concurrent excitation
20
excitation inhibition
20
motoneuronal activity
12
b4/5 b70
12
inhibitory neurons
8
temporally specific
8
specific control
8
control activity
8
activity motoneuron
8
feeding cpg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!