Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron deficiency has been described as a risk factor in secondary restless legs syndrome (RLS), although it has not been investigated whether iron deficiency induces sensory symptoms in RLS patients. In this study, we established a mouse model of iron deficiency by administering a purified iron-deficient (ID) diet (<8 mg/kg iron) or nonpurified standard diet [normal diet (ND)] (<179 mg/kg iron) to male C57Bl/6 mice from postnatal d 28 for 1, 4, or 15 wk. The level of iron deficiency was assessed by the plasma iron concentration. After varying durations of iron deficiency, both acute and chronic sensory components of pain were measured using hot-plate and formalin tests, which preferentially assess Adelta- and C-fibers, respectively. Based on hot-plate reaction time, ID mice had a lower acute pain threshold than the ND mice after 4 and 15 wk but not after 1 wk. In addition, ID mice had an increased chronic pain response compared with the ND mice only in the late phase of the formalin-test after 1, 4, and 15 wk of iron deficiency. This increased pain response was accompanied by an elevated expression of c-Fos immunoreactive cells at the ipsilateral dorsal horn, suggesting that iron deficiency indirectly increases cell activity at the spinal cord level. These results demonstrate that iron deficiency increases acute and chronic pain responses in mice and may cause similar alterations to the acute pain threshold and sensitivity to C-fiber-mediated chronic pain in ID RLS patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3945/jn.109.112557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!