AI Article Synopsis

Article Abstract

The phytohormone abscisic acid (ABA) is known to be a negative regulator of legume root nodule formation. By screening Lotus japonicus seedlings for survival on an agar medium containing 70 microM ABA, we obtained mutants that not only showed increased root nodule number but also enhanced nitrogen fixation. The mutant was designated enhanced nitrogen fixation1 (enf1) and was confirmed to be monogenic and incompletely dominant. The low sensitivity to ABA phenotype was thought to result from either a decrease in the concentration of the plant's endogenous ABA or from a disruption in ABA signaling. We determined that the endogenous ABA concentration of enf1 was lower than that of wild-type seedlings, and furthermore, when wild-type plants were treated with abamine, a specific inhibitor of 9-cis-epoxycarotenoid dioxygenase, which results in reduced ABA content, the nitrogen fixation activity of abamine-treated plants was elevated to the same levels as enf1. We also determined that production of nitric oxide in enf1 nodules was decreased. We conclude that endogenous ABA concentration not only regulates nodulation but also nitrogen fixation activity by decreasing nitric oxide production in nodules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785972PMC
http://dx.doi.org/10.1104/pp.109.142638DOI Listing

Publication Analysis

Top Keywords

nitrogen fixation
16
enhanced nitrogen
12
endogenous aba
12
nodulation nitrogen
8
abscisic acid
8
nitrogen fixation1
8
lotus japonicus
8
aba
8
root nodule
8
aba concentration
8

Similar Publications

Intercropping with legume forages is recognized as an effective strategy for enhancing nitrogen levels in agroforestry, while mowing may influence nitrogen fixation capacity and yield. This study investigated the rooting, nitrogen fixation, nutritive value, and yield of alfalfa ( L.) under intercropping and varying mowing frequencies (CK, 2, and 3) from 2021 to 2023, using walnut ( L.

View Article and Find Full Text PDF

Biofilm Formation, Modulation, and Transcriptomic Regulation Under Stress Conditions in sp.

Int J Mol Sci

January 2025

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

In nature, bacteria often form heterogeneous communities enclosed in a complex matrix known as biofilms. This extracellular matrix, produced by the microorganisms themselves, serves as the first barrier between the cells and the environment. It is composed mainly of water, extracellular polymeric substances (EPS), lipids, proteins, and DNA.

View Article and Find Full Text PDF

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

Nitrogen inputs for sustainable crop production for a growing population require the enhancement of biological nitrogen fixation. Efforts to increase biological nitrogen fixation include bioprospecting for more effective nitrogen-fixing bacteria. As bacterial nitrogenases are extremely sensitive to oxygen, most primary isolation methods rely on the use of semisolid agar or broth to limit oxygen exposure.

View Article and Find Full Text PDF

The genus comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes sp. TT6, isolated from human skin, with a focus on its metabolic and environmental adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!