Background: There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs) in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus.

Results: In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens) had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes.

Conclusion: By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs described in woody plant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760585PMC
http://dx.doi.org/10.1186/1471-2164-10-452DOI Listing

Publication Analysis

Top Keywords

snp diversity
12
camaldulensis loxophleba
12
species
11
biosynthetic pathways
8
plant species
8
globulus nitens
8
snps
7
snp
5
comparative snp
4
diversity
4

Similar Publications

Endometriosis is a complex disease with diverse etiologies, including hormonal, immunological, and environmental factors; however, its exact pathogenesis remains unknown. While surgical approaches are the diagnostic and therapeutic gold standard, identifying endometriosis-associated genes is a crucial first step. Five endometriosis-related gene expression studies were selected from the available datasets.

View Article and Find Full Text PDF

Unveiling the Genetic Diversity and Demographic History of in Sierra Leone Using Genotyping-By-Sequencing.

Plants (Basel)

December 2024

Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 2005, USA.

is a rare Coffea species boasting a flavor profile comparable to Arabica coffee () and has a good adaptability to lowland tropical climates. This species faces increasing threats from climate change, deforestation, and habitat fragmentation in its West African homeland. Using 1037 novel SNP markers derived from Genotyping-by-Sequencing (GBS), we revealed the presence of three distinct natural populations (mean Fst = 0.

View Article and Find Full Text PDF

Genetic Diversity of the Collection of Far Eastern spp. Revealed by RAD Sequencing Technology.

Plants (Basel)

December 2024

N.V. Tsitsin Main Botanical Garden, Russian Academy of Sciences, 127276 Moscow, Russia.

More than ten species of the Lindl. genus bear edible fruits rich in biologically active compounds, which are essential and beneficial for human health. The most popular cultivars today are the large-fruited species, and , commonly known as kiwi.

View Article and Find Full Text PDF

Genome-wide association mapping of bruchid resistance loci in soybean.

PLoS One

January 2025

Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!