A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering surfaces for substrate-mediated gene delivery using recombinant proteins. | LitMetric

Engineering surfaces for substrate-mediated gene delivery using recombinant proteins.

Biomacromolecules

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.

Published: October 2009

Immobilized fibronectin and other natural proteins have been utilized to enhance substrate-mediated gene delivery, with apparent contributions from the intrinsic bioactivity and also physical properties of the immobilized proteins. In this report, we investigated the use of recombinant proteins, compared to the full-length fibronectin protein, as surface coatings for gene delivery to investigate the mechanisms by which fibronectin enhances gene transfer. The recombinant fibronectin fragment FNIII(7-10) (FNIII) contains the alpha(5)beta(1) binding domain of fibronectin and supports cell adhesion, whereas the recombinant protein polymer PP-12 is also negatively charged and has a molecular weight similar to FNIII, but lacks cell binding domains. Transfection was compared on surfaces modified with FNIII, full-length fibronectin, or PP-12. The full-length fibronectin provided the greatest extent of transgene expression relative to FNIII or PP-12, which was consistent with the amount of DNA that associated with cells. FNIII had 4.2-fold or 4.7-fold lower expression levels relative to fibronectin for polyplexes and lipoplexes, respectively. PP-12 produced expression levels that were 317-fold and 12.0-fold less than fibronectin for polyplexes and lipoplexes, respectively. Although expression was greater on FNIII relative to PP-12, the levels of DNA associated per cell with FNIII were similar to or less than those with PP-12, suggesting that the bioactive sequences may contribute to an enhanced intracellular trafficking. For lipoplexes delivered on FNIII, the efficiency of intracellular trafficking and levels of caveolar DNA were greater than that observed with either the full-length fibronectin or PP-12. For polyplexes, fibronectin fragment resulted in greater intracellular trafficking efficiency compared to PP-12 protein polymer. Recombinant proteins can be employed in place of full-length extracellular matrix proteins for substrate-mediated gene delivery, and bioactive sequences can influence one or more steps in the gene delivery process to maximize transfection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765786PMC
http://dx.doi.org/10.1021/bm900628eDOI Listing

Publication Analysis

Top Keywords

gene delivery
20
full-length fibronectin
16
substrate-mediated gene
12
recombinant proteins
12
intracellular trafficking
12
fibronectin
11
fibronectin fragment
8
fniii
8
protein polymer
8
pp-12
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!