Chemical and thermal unfolding of glypican-1: protective effect of heparan sulfate against heat-induced irreversible aggregation.

Biochemistry

Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden.

Published: October 2009

Glypicans are cell-surface heparan sulfate proteoglycans that influence Wnt, hedgehog, decapentaplegic, and fibroblast growth factor activity via their heparan sulfate chains. However, recent studies have shown that glypican core proteins also have a role in growth factor signaling. Here, we expressed secreted recombinant human glypican-1 in eukaryotic cells. Recombinant glypican-1 was expressed as two glycoforms, one as proteoglycan substituted with heparan sulfate chains and one as the core protein devoid of glycosaminoglycans. Far-UV circular dichroism (CD) analysis of glypican-1 isolated under native conditions showed that the glypican-1 core protein is predominantly alpha-helical in structure, with identical spectra for the core protein and the proteoglycan form. The conformational stability of glypican-1 core protein to urea and guanidine hydrochloride denaturation was monitored by CD and fluorescence spectroscopy and showed a single unfolding transition at high concentrations of the denaturant (5.8 and 2.6 M, respectively). Renaturation from guanidine hydrochloride gave far-UV CD and fluorescence spectra identical to the spectra of native glypican-1. Thermal denaturation monitored by CD and differential scanning calorimetry (DSC) showed a single structural transition at a temperature of approximately 70 degrees C. Refolding of the heat-denatured glypican-1 core protein was dependent on protein concentration, suggesting that intermolecular interactions are involved in irreversible denaturation. However, refolding was concentration-independent for the proteoglycan form, suggesting that O-glycosylation protects the protein from irreversible aggregation. In summary, we have shown that the glypican-1 core protein is a stable alpha-helical protein and that the proteoglycan form of glypican-1 is protected from heat-induced aggregation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi901402xDOI Listing

Publication Analysis

Top Keywords

core protein
24
heparan sulfate
16
glypican-1 core
16
proteoglycan form
12
glypican-1
10
protein
9
irreversible aggregation
8
growth factor
8
sulfate chains
8
identical spectra
8

Similar Publications

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!