[Fly ash-catalyzed oxidation of p-nitro phenol with H2O2].

Huan Jing Ke Xue

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian 116023, China.

Published: July 2009

Fly ash was investigated as a catalyst in the oxidation of p-nitro phenol (PNP) with H2O2 at ambient temperature and pressure. The physical and chemical properties of fly ash were analyzed. The effects of fly ash composition, pretreatment methods and other parameters (such as dosage, pH, reaction time and oxidant concentration) on PNP removal rate were studied. It was found that fly ash with larger specific surface area and higher carbon content demonstrated higher catalytic activity. Heat treatment (350 degrees C) on fly ash could effectively improve the PNP removal rate. With an initial H2O2 concentration of 200 mg/L, 60 g/L heat-treated fly ash could remove 62.38% PNP at 25 degrees C, pH = 2. Specific surface area, carbon and metal oxide contents of fly ash play an important role in the catalysis process. The adsorption control experiment showed that adsorption was the main effect (65.97%) in the catalysis process. The activity of the catalyst gradually increased during its reuse. The PNP removal rate could reach 82.47% and 98.72% in the second and third rounds of reuse, respectively. The removal rate remained at about 99% in the rest 9 rounds of reuse. And the catalytic properties decreased after 12 times uses.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fly ash
28
removal rate
16
pnp removal
12
oxidation p-nitro
8
p-nitro phenol
8
specific surface
8
surface area
8
catalysis process
8
rounds reuse
8
fly
7

Similar Publications

Enhancement of Zn adsorption on coal fly ash-based geopolymer with steel slag incorporation: leaching behavior and performance insights.

Environ Pollut

January 2025

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, China 130021.

Industrial solid wastes like coal fly ash (CFA) and steel slag pose environmental challenges, while the remediation of heavy metal-contaminated water remains a global priority. This study investigates the impact of incorporating steel slag during the synthesis of CFA-based geopolymers (CFAG) on the leaching characteristics of inherent heavy metals in CFA and the Zn adsorption performance of CFAG. Leaching experiments show geopolymerization effectively immobilizes heavy metals including Fe, Cr, As, Cd, and Ti in CFA while having little effect on Mn, V, and Ni.

View Article and Find Full Text PDF

The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

In the framework of sustainable development and environmental preservation, this research aims to improve the stability and frost resistance of sulfate saline soil by utilizing industrial solid waste. Geopolymer materials containing fly ash (FA) activated by different NaOH concentrations were studied for study on stabilized soil with saline soil, with NaOH concentrations used ranged from 0.1 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!