Recent evidence showed that epileptic seizures increase hippocampal neurogenesis in the adult rat, but prolonged seizures result in the aberrant hippocampal neurogenesis that often leads to a recurrent excitatory circuitry and thus contributes to epileptogenesis. However, the mechanism underlying the aberrant neurogenesis after prolonged seizures remains largely unclear. In this study, we examined the role of activated astrocytes and microglia in the aberrant hippocampal neurogenesis induced by status epilepticus. Using a lithium-pilocarpine model to mimic human temporal lobe epilepsy, we found that status epilepticus induced a prominent activation of astrocytes and microglia in the dentate gyrus 3, 7, 14, and 20 days after the initial seizures. Then, we injected fluorocitrate stereotaxicly into the dentate hilus to inhibit astrocytic metabolism and found that fluorocitrate failed to prevent the seizure-induced formation of ectopic hilar basal dendrites but instead promoted the degeneration of dentate granule cells after seizures. In contrast, a selective inhibitor of microglia activation, minocycline, inhibited the aberrant migration of newborn neurons at 14 days after status epilepticus. Furthermore, with stereotaxic injection of lipopolysaccharide into the intact dentate hilus to activate local microglia, we found that lipopolysaccharide promoted the development of ectopic hilar basal dendrites in the hippocampus. These results indicate that the activated microglia in the epileptic hilus may guide the aberrant migration of newborn neurons and that minocycline could be a potential drug to impede seizure-induced aberrant migration of newborn neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.22224 | DOI Listing |
Animal Model Exp Med
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
Background: Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS.
View Article and Find Full Text PDFNeurol Int
January 2025
Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA.
Neuroinflammation is a blanket term that describes the body's complex inflammatory response in the central nervous system (CNS). It encompasses a phenotype shift to a proinflammatory state, the release of cytokines, the recruitment of peripheral immune cells, and a wide variety of other processes. Neuroinflammation has been implicated in nearly every major CNS disease ranging from Alzheimer's disease to brain cancer.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea.
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells.
View Article and Find Full Text PDFCells
January 2025
Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye.
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!