A new optical Fourier domain filtering scheme that combines the conventional optical space-invariant linear filtering with a self-pumped nonlinear-optical phase-conjugation technique is proposed. The new method is used for a real-time detection and channel evaluation of the multipath information needed in radar, sonar, and communication signal-processing applications. Preliminary experimental demonstrations are included.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.16.000741DOI Listing

Publication Analysis

Top Keywords

detection multipath
4
multipath self-pumped
4
self-pumped optical
4
optical phase-conjugate
4
phase-conjugate filter
4
filter optical
4
optical fourier
4
fourier domain
4
domain filtering
4
filtering scheme
4

Similar Publications

Background: DNA methylation catalyzed by various DNA methyltransferases (DNA MTases) is one of the important epigenetic regulations in both eukaryotes and prokaryotes. Therefore, the detection of DNA MTase activity is a vital target and direction in the study of methylation-related diseases.

Results: In this study, an ultrasensitive and robust strategy was developed for DNA MTase activity sensing based on bifunctional probe propelling multipath strand displacement amplification and CRISPR/Cas12a techniques.

View Article and Find Full Text PDF

XAI GNSS-A Comprehensive Study on Signal Quality Assessment of GNSS Disruptions Using Explainable AI Technique.

Sensors (Basel)

December 2024

LASSENA-Laboratory of Space Technologies, Embedded Systems, Navigation and Avionics, École de Technologie Supérieure (ETS), Montreal, QC H3C-1K3, Canada.

The hindering of Global Navigation Satellite Systems (GNSS) signal reception by jamming and spoofing attacks degrades the signal quality. Careful attention needs to be paid when post-processing the signal under these circumstances before feeding the signal into the GNSS receiver's post-processing stage. The identification of the time domain statistical attributes and the spectral domain characteristics play a vital role in analyzing the behaviour of the signal characteristics under various kinds of jamming attacks, spoofing attacks, and multipath scenarios.

View Article and Find Full Text PDF

We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.

View Article and Find Full Text PDF

Integrating UPLC-MS/MS Bioinformatics and In Vivo Experiments Validation to Elucidate the Mechanism of Wenzi Jiedu Decoction in Suppressing Colorectal Cancer.

Phytochem Anal

December 2024

Institute of Oncology, the First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Objectives: We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).

Methods: Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database.

View Article and Find Full Text PDF

Detecting green fruits presents significant challenges due to their close resemblance in color to the leaves in an orchard environment. We designed GreenFruitDetector, a lightweight model based on an improved YOLO v8 architecture, specifically for green fruit detection. In the Backbone network, we replace ordinary convolution with Deformable Convolution to enhance the extraction of geometric features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!