Ubiquitin-binding domains - from structures to functions.

Nat Rev Mol Cell Biol

Institute of Biochemistry II and Cluster of Excellence "Macromolecular Complexes", Goethe University Frankfurt, Germany.

Published: October 2009

Ubiquitin-binding domains (UBDs) are modular elements that bind non-covalently to the protein modifier ubiquitin. Recent atomic-level resolution structures of ubiquitin-UBD complexes have revealed some of the mechanisms that underlie the versatile functions of ubiquitin in vivo. The preferences of UBDs for ubiquitin chains of specific length and linkage are central to these functions. These preferences originate from multimeric interactions, whereby UBDs synergistically bind multiple ubiquitin molecules, and from contacts with regions that link ubiquitin molecules into a polymer. The sequence context of UBDs and the conformational changes that follow their binding to ubiquitin also contribute to ubiquitin signalling. These new structure-based insights provide strategies for controlling cellular processes by targeting ubiquitin-UBD interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359374PMC
http://dx.doi.org/10.1038/nrm2767DOI Listing

Publication Analysis

Top Keywords

ubiquitin-binding domains
8
ubiquitin molecules
8
ubiquitin
7
domains structures
4
structures functions
4
functions ubiquitin-binding
4
ubds
4
domains ubds
4
ubds modular
4
modular elements
4

Similar Publications

The replicative polymerase delta is inefficient copying repetitive DNA sequences. Error-prone translesion polymerases have been shown to switch with high-fidelity replicative polymerases to help navigate repetitive DNA. We and others have demonstrated the importance of one such translesion polymerase, polymerase Eta (pol eta), in facilitating replication at genomic regions called common fragile sites (CFS), which are difficult-to-replicate genomic regions that are hypersensitive to replication stress.

View Article and Find Full Text PDF

TNFAIP3-interacting protein 1 (ABIN-1) negatively regulates caspase-8/FADD-dependent pyroptosis.

FEBS J

January 2025

Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China.

TNFAIP3-interacting protein 1 (TNIP1; also known as ABIN-1) is a ubiquitin-binding protein that suppresses death-receptor- or Toll-like receptor-mediated apoptosis and necroptosis; however, it remains unclear whether ABIN-1 is capable of regulating pyroptosis. In the present study, we found that, in mouse embryonic fibroblasts and macrophages, ABIN-1 deficiency sensitized cells to poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol-induced pyroptosis besides apoptosis and necroptosis. The sensitizing effect of ABIN-1 deficiency on pyroptosis depended on caspase-8 and its adaptor molecule FAS-associated death domain protein.

View Article and Find Full Text PDF

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is the third most common cancer worldwide, and its occurrence and progression are often regulated by genetic and hereditary factors. Ubiquitination and the associated ubiquitin-binding enzymes and ligases regulate the tumor microenvironment and antitumor immunity to mediate tumor pathogenesis and progression. In this study, we examined the molecular characteristics and immunomodulatory effects of ubiquitination-associated genes that mediate CRC prognosis.

View Article and Find Full Text PDF

Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!