Local recurrence is a therapeutic challenge for radiofrequency ablation (RFA) in treatment of small solid focal malignancies. Here we show that RFA induced heat shock proteins (HSPs) expression and high mobility group box-1 (HMGB1) translocation in xenografted melanoma, which might create a proinflammatory microenvironment that favors tumor antigen presentation and activation of the effector T cells. On this basis, we investigate whether a prime-boost strategy combining a prime with heat-shocked tumor cell lysate-pulsed dendritic cell (HT-DC) followed by an in situ boost with radiofrequency thermal ablation can prevent local tumor recurrence. The combination treatment with HT-DC and RFA showed potent antitumor effects, with >or=90% of tumor recurrence abrogated following RFA treatment. By contrast, prevaccination with unheated tumor lysate-pulsed DC had little effect on tumor relapse. Analysis of the underlying mechanism revealed that splenocytes from mice treated with HT-DC plus RFA contained significantly more tumor-specific, IFN-gamma-secreting T cells compared with control groups. Moreover, adoptive transfer of splenocytes from successfully treated tumor-free mice protected naive animals from tumor recurrence following RFA, and this was mediated mainly by CD8(+) T cells. Therefore, the optimal priming for the DC vaccination before RFA is important for boosting antigen-specific T cell responses and prevention of cancer recurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814395PMC
http://dx.doi.org/10.1038/mt.2009.221DOI Listing

Publication Analysis

Top Keywords

tumor recurrence
12
cancer recurrence
8
radiofrequency ablation
8
tumor
8
rfa treatment
8
ht-dc rfa
8
rfa
7
recurrence
6
abrogation local
4
local cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!