A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Binding-equilibrium and kinetic studies of anthocyanidin reductase from Vitis vinifera. | LitMetric

Binding-equilibrium and kinetic studies of anthocyanidin reductase from Vitis vinifera.

Arch Biochem Biophys

Chimie et Biologie des Membranes et des Nanoobjets UMR CNRS 5248, Bâtiment B8, Avenue des Facultés, Université Bordeaux 1, Talence Cedex, France.

Published: November 2009

Anthocyanidin reductase from Vitis vinifera catalyzes an NADPH-dependent double reduction of anthocyanidins. At pH 7.5 and 30 degrees C, steady-state kinetics support a hyperbolic and rapid-equilibrium ordered mechanism, with NADPH binding first, K(M(cyan))=2.82+/-0.66microM and K(i(NADPH))=111+/-23microM. The chromatographic method of Hummel and Dreyer was used for binding-equilibrium studies of NADPH, NADP(+) and catechin, at pH 7. This confirmed hyperbolic binding of NADPH and NADP(+) to the free enzyme, with a single binding site each and with dissociation constants K(NADPH)=45.9+/-2microM and K(NADP+)=83+/-5microM. There was no significant binding of catechin. We conclude (i) that the most likely mechanism is sequential ordered Bi Uni Uni Bi, with NADPH binding first and NADP(+) released last, and (ii) that internal conversion of the first ternary complex, i.e. that associated with the first hydride transfer, is rate-limiting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2009.09.010DOI Listing

Publication Analysis

Top Keywords

anthocyanidin reductase
8
reductase vitis
8
vitis vinifera
8
nadph binding
8
nadph nadp+
8
binding
5
binding-equilibrium kinetic
4
kinetic studies
4
studies anthocyanidin
4
vinifera anthocyanidin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!