This paper presents the determination of nine haloacetic acids (HAAs) in high ionic strength, treated effluent waters using an ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS-MS) method with internal standards and discussions of each of the method parameters. Data is also provided for these same samples using USEPA Method 552.2. The sample matrices contain up to 170 mg/L chloride and 243 mg/L sulfate. Matrix ions are separated from the analytes using a high capacity anion exchange analytical column and diverted to a waste stream during each analysis to avoid signal suppression and contamination of the detector. No derivatization, offline matrix elimination, or preconcentration is used. Four isotopically-labeled HAAs are used for quantification, and detection limits are in the range of 400-1000 microg/L with R(2) of at least 0.997 over two orders of magnitude for all analytes in matrix. A trichloroacetic acid (TCAA) internal standard with the label on the alpha carbon is found to be more stable than the TCAA-1-(13)C. Amounts found using IC-MS-MS are 65-130% of amounts found using Method 552.2 for all analytes in the real world treated effluent waters. Detection limits for all nine analytes in matrix are in the range of 100-700 ng/L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/chromsci/47.7.523 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.
View Article and Find Full Text PDFSci Total Environ
January 2025
695 Park Avenue, The Institute for Sustainable Cities, Hunter College of the City University of New York, New York, NY 10065, United States of America. Electronic address:
Natural organic matter (NOM) in rivers is an important energy source to sustain aquatic ecosystem health. However, in surface water supply systems where chlorination is often used for disinfection, NOM is also a precursor for the carcinogenic and mutagenic disinfection byproducts such as trihalomethanes and haloacetic acids. Effective management of NOM in rivers to maintain both aquatic ecosystem functions and high-quality water supply requires better understanding of the NOM transport patterns.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, 310021, China.
Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.
View Article and Find Full Text PDFObjective: This study aims to investigate the correlation between exposure to disinfection byproducts of chlorination and preterm birth (PTB) through evidence-based medicine Meta-analysis and Mendelian randomization (MR) analysis.
Study Design: Meta-analysis was conducted on 17 studies involving 1,251,426 neonates, revealing a higher risk of PTB with exposure to total trihalomethanes (TTHMs) and chloroform. Mendelian randomization (MR) analysis confirmed a causal relationship between chlorides and PTB.
Chemosphere
January 2025
University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!