Redox properties of H(2)TFcP [TFcP(2-) = 5,10,15,20-tetraferrocenylporphyrin(2-)] were investigated using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry methods in a large variety of solvents and electrolytes. When DMF, THF, and MeCN were used with TBAP as the supporting electrolyte, the first oxidation wave was assigned to a single four-electron oxidation process reflecting simultaneous oxidation of all iron(II) centers into iron(III) centers in H(2)TFcP. When an o-DCB (1,2-dichlorobenzene)/TBAP combination was used in electrochemical experiments, four ferrocene substituents underwent two very diffuse, "two-electron" stepwise oxidations. The use of a weakly coordinating TFAB ([NBu(4)][B(C(6)F(5))(4)]) electrolyte in o-DCB or DCM results in four single-electron oxidation processes for ferrocene substituents in which the first and second single-electron waves have a relatively large separation, while the second, third, and fourth oxidation processes are more closely spaced; similar results were observed when a DCM/TBAP system and an imidazolium cation-based ionic liquid ((bmim)Tf(2)N = N-butyl-N'-methylimidazolium bis(trifluoromethanesulfonyl)imide) were used. Spectroelectrochemical oxidation of H(2)TFcP in o-DCB or DCM with TFAB as the supporting electrolyte allowed for characterization of the mixed-valence [H(2)TFcP](+), [H(2)TFcP](2+), and [H(2)TFcP](3+) compounds by UV-vis spectroscopy in addition to the "all-Fe(III)" [H(2)TFcP](4+). The chemical oxidation of H(2)TFcP was tested using a variety of oxidants which resulted in formation of mixed-valence [H(2)TFcP](+) and [H(2)TFcP](2+) as well as [H(2)TFcP](4+), which were characterized by UV-vis-NIR, MCD, IR, Mossbauer, and XPS spectroscopy. The intervalence-charge-transfer bands observed in the near-IR region in [H(2)TFcP](+) and [H(2)TFcP](2+) complexes were analyzed using Hush formalism and found to be of class II (in Robin-Day classification) character with localized ferrous and ferric centers. Class II behavior of [H(2)TFcP](+) and [H(2)TFcP](2+) complexes was further confirmed by Mossbauer, IR, and XPS data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja905310hDOI Listing

Publication Analysis

Top Keywords

[h2tfcp]+ [h2tfcp]2+
16
supporting electrolyte
8
h2tfcp o-dcb
8
ferrocene substituents
8
o-dcb dcm
8
oxidation processes
8
oxidation h2tfcp
8
mixed-valence [h2tfcp]+
8
mossbauer xps
8
[h2tfcp]2+ complexes
8

Similar Publications

The electronic structure, redox properties, and long-range metal-metal coupling in metal-free 5,10,15,20-tetra(ruthenocenyl)porphyrin (HTRcP) were probed by spectroscopic (NMR, UV-vis, magnetic circular dichroism (MCD), and atmospheric pressure chemical ionization (APCI)), electrochemical (cyclic voltammetry, CV, and differential pulse voltammetry, DPV), spectroelectrochemical, and chemical oxidation methods, as well as theoretical (density functional theory, DFT, and time-dependent DFT, TDDFT) approaches. It was demonstrated that the spectroscopic properties of HTRcP are significantly different from those in HTFcP (metal-free 5,10,15,20-tetra(ferrocenyl)porphyrin). Ruthenocenyl fragments in HTRcP have higher oxidation potentials than the ferrocene groups in the HTFcP complex.

View Article and Find Full Text PDF

A ferrocene-porphyrin ligand for multi-transduction chemical sensor development.

Sensors (Basel)

May 2013

Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 1, Rome 00133, Italy.

5,10,15,20-Tetraferrocenyl porphyrin, H2TFcP, a simple example of a donor-acceptor system, was tested as ligand for the development of a novel multi-transduction chemical sensors aimed at the determination of transition metal ions. The fluorescence energy transfer between ferrocene donor and porphyrin acceptor sub-units was considered. The simultaneously measured optical and potentiometric responses of solvent polymeric membranes based on H2TFcP permitted the detection of lead ions in sample solutions, in the concentration range from 2.

View Article and Find Full Text PDF

The vertical excitation energies of H(2)TPP [TPP = 5,10,15,20-tetraphenylporphyrin(2-)], H(2)FcPh(3)P [FcPh(3)P = 5-ferrocenyl-10,15,20-triphenylporphyrin(2-)], cis-H(2)Fc(2)Ph(2)P [cis-Fc(2)Ph(2)P = 5,10-bisferrocenyl-15,20-diphenylporphyrin (2-)], trans-H(2)Fc(2)Ph(2)P [trans-Fc(2)Ph(2)P = 5,15-bisferrocenyl-10,20-diphenylporphyrin(2-)], H(2)Fc(3)PhP [H(2)Fc(3)PhP = 5,10,15-trisferrocenyl-20-phenylporphyrin(2-)], and H(2)TFcP [TFcP = 5,10,15,20-tetraferrocenylporphyrin(2-)] were investigated using a time-dependent density functional theory (DFT) approach and compared to their experimental UV-vis spectra in the 10,000-30,000 cm(-1) region. It was shown that the lowest energy transitions in meso(ferrocenyl)-containing porphyrins have predominantly ferrocene-to-porphyrin charge transfer character, while the porphyrin-centered π-π* transitions predicted by the Gouterman's classic four-orbital model still have the largest intensities in the UV-vis region. The number of predominantly ferrocene-to-porphyrin charge transfer transitions increases with the number of ferrocene substituents and becomes dominant in H(2)TFcP.

View Article and Find Full Text PDF

H(2)FcPh(3)P [FcPh(3)P = 5-ferrocenyl-10,15,20-triphenyl porphyrin(2-)], cis-H(2)Fc(2)Ph(2)P [cis-Fc(2)Ph(2)P = 5,10-bisferrocenyl-15,20-diphenyl porphyrin(2-)], trans-H(2)Fc(2)Ph(2)P [trans-Fc(2)Ph(2)P = 5,15-bisferrocenyl-10,20-diphenyl porphyrin(2-)], and H(2)Fc(3)PhP [Fc(3)PhP = 5,10,15-trisferrocenyl-20-phenyl porphyrin(2-)] along with H(2)TPP [TPP = 5,10,15,20-tetraphenylporphyrin] and H(2)TFcP [TFcP = 5,10,15,20-tetraferrocenyl porphyrin(2-)] were isolated from the direct cross-condensation reaction between pyrrole, benzaldehyde, and ferrocene carboxaldehyde or from the reaction between ferrocenyl-2,2'-dipyrromethane and benzaldehyde, suggesting a scrambling reaction mechanism for the last approach. All compounds were characterized by UV-vis, MCD, and NMR spectroscopy; APCI MS and MS/MS methods; as well as high-resolution ESI MS spectrometry. The conformational flexibility of ferrocene substituents in all compounds was confirmed using variable-temperature NMR and computational methods.

View Article and Find Full Text PDF

Redox properties of H(2)TFcP [TFcP(2-) = 5,10,15,20-tetraferrocenylporphyrin(2-)] were investigated using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry methods in a large variety of solvents and electrolytes. When DMF, THF, and MeCN were used with TBAP as the supporting electrolyte, the first oxidation wave was assigned to a single four-electron oxidation process reflecting simultaneous oxidation of all iron(II) centers into iron(III) centers in H(2)TFcP. When an o-DCB (1,2-dichlorobenzene)/TBAP combination was used in electrochemical experiments, four ferrocene substituents underwent two very diffuse, "two-electron" stepwise oxidations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!