Hierarchical nanostructures with SnO(2) backbones and ZnO branches are successfully prepared in a large scale by combining the vapor transport and deposition process (for SnO(2) nanowires) and a hydrothermal growth (for ZnO). The ZnO nanorods grow epitaxially on the SnO(2) nanowire side faces mainly with a four-fold symmetry. The number density and morphology of the secondary ZnO can be tailored by changing the precursor concentration, reaction time, and by adding surfactants. Photoluminescence (PL) properties are studied as a function of temperature and pumping power. Such hybrid SnO(2)-ZnO nanostructures show an enhanced near-band gap emission compared with the primary SnO(2) nanowires. Under the optical excitation, a UV random lasing is observed which originates from the hierarchically assembled ZnO branches. These three-dimensional nanostructures may have application potentials as chemical sensors, battery electrodes, and optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn900848x | DOI Listing |
STAR Protoc
December 2024
Institute für High-Frequency and Semiconductor-System Technologies, Technische Universität Berlin, Einsteinufer 25, 10587 Berlin, Germany. Electronic address:
Molecules
November 2024
State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
Multicolor emission and dynamic color tuning with large spectral range are challenging to realize but critically important in many areas of technology and daily life, such as general lighting, display, multicolor detection and multi-band communication. Herein, we report an excitation-power-dependent color-tuning emission from an individual Sn-doped CdS nanowire with a large spectral range and continuous color tuning. Its photoluminescence (PL) spectrum shows a broad trap-state emission band out of Sn dopants, which is superposed by whispering-gallery (WG) microcavity due to the nanostructure size and its structure, besides the CdS band-edge emission.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Institute of Physics and Technology, Satbayev University, Ibragimov 11, Almaty 050013, Kazakhstan.
ACS Sens
November 2024
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
Selective detection and monitoring of hazardous gases with similar properties are highly desirable to ensure human safety. The development of flexible and room-temperature (RT) operable chemiresistive gas sensors provides an excellent opportunity to create wearable devices for detecting hazardous gases surrounding us. However, chemiresistive gas sensors typically suffer from poor selectivity and zero-cross selectivity toward similar types of gases.
View Article and Find Full Text PDFMikrochim Acta
October 2024
College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
A convenient, non-toxic, and low-cost tin dioxide (SnO)/nickel oxide (NiO)/reduced graphene oxide (rGO) nanocatalytic electrode was investigated, which can effectively promote the hydrogen evolution reaction and can also be used to construct a sensitive winter wheat cold-tolerant RNA sensor. Due to the good synergy and photocurrent generation between SnO and NiO, which accelerates the electron transfer and catalyzes the hydrolysis reaction, the resultant data for the hydrogen evolution reaction in alkaline environment of this material are very impressive, with cathodic current densities of up to 10 mA cm. The marvelous heterostructures and photovoltaic properties form a signal amplification system, which enables the nanocomposites to have an excellent linear sensitivity in low-concentration RNA solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!